A biphasic mixture model is developed that can account for the observed tension-compression nonlinearity of cartilage by employing the continuum-based Conewise Linear Elasticity (CLE) model of Curnier et al. (J. Elasticity, 37, 1–38, 1995) to describe the solid phase of the mixture. In this first investigation, the orthotropic octantwise linear elasticity model was reduced to the more specialized case of cubic symmetry, to reduce the number of elastic constants from twelve to four. Confined and unconfined compression stress-relaxation, and torsional shear testing were performed on each of nine bovine humeral head articular cartilage cylindrical plugs from 6 month old calves. Using the CLE model with cubic symmetry, the aggregate modulus in compression and axial permeability were obtained from confined compression (HA=0.64±0.22 MPa, kz=3.62±0.97×1016m4/Ns˙s,r2=0.95±0.03), the tensile modulus, compressive Poisson ratio, and radial permeability were obtained from unconfined compression (E+Y=12.75±1.56 MPa, v=0.03±0.01,kr=6.06±2.10×1016m4/Ns˙s,r2=0.99±0.00), and the shear modulus was obtained from torsional shear (μ=0.17±0.06 MPa). The model was also employed to predict the interstitial fluid pressure successfully at the center of the cartilage plug in unconfined compression r2=0.98±0.01. The results of this study demonstrate that the integration of the CLE model with the biphasic mixture theory can provide a model of cartilage that can successfully curve-fit three distinct testing configurations while producing material parameters consistent with previous reports in the literature. [S0148-0731(00)00306-X]

1.
Kempson
,
G. E.
,
Freeman
,
M. A.
, and
Swanson
,
S. A.
,
1968
, “
Tensile Properties of Articular Cartilage
,”
Nature (London)
,
220
, pp.
1127
1128
.
2.
Woo
,
S. L.
,
Lubock
,
P.
,
Gomez
,
M. A.
,
Jemmott
,
G. F.
,
Kuei
,
S. C.
, and
Akeson
,
W. H.
,
1979
, “
Large Deformation Nonhomogeneous and Directional Properties of Articular Cartilage in Uniaxial Tension
,”
J. Biomech.
,
12
, pp.
437
446
.
3.
Roth
,
V.
, and
Mow
,
V. C.
,
1980
, “
The Intrinsic Tensile Behavior of the Matrix of Bovine Articular Cartilage and Its Variation With Age
,”
J. Bone Jt. Surg., Am. Vol.
,
62A
, pp.
1102
1117
.
4.
Akizuki
,
S.
,
Mow
,
V. C.
,
Muller
,
F.
,
Pita
,
J. C.
, and
Howell
,
D. S.
,
1987
, “
Tensile Properties of Human Knee Joint Cartilage. II. Correlations Between Weight Bearing and Tissue Pathology and the Kinetics of Swelling
,”
J. Orthop. Res.
,
5
, pp.
173
186
.
5.
Jurvelin
,
J. S.
,
Buschmann
,
M. D.
, and
Hunziker
,
E. B.
,
1996
, “
Mechanical Anisotropy of Human Knee Articular Cartilage in Compression
,”
Trans. Annu. Meet.—Orthop. Res. Soc.
,
21
, p.
7
7
.
6.
Schinagl
,
R. M.
,
Gurskis
,
D.
,
Chen
,
A. C.
, and
Sah
,
R. L.
,
1997
, “
Depth-Dependent Confined Compression Modulus of Full-Thickness Bovine Articular Cartilage
,”
J. Orthop. Res.
,
15
, pp.
499
506
.
7.
Kempson
,
G. E.
,
Freeman
,
M. A.
, and
Swanson
,
S. A.
,
1971
, “
The Determination of a Creep Modulus for Articular Cartilage From Indentation Tests of the Human Femoral Head
,”
J. Biomech.
,
4
, pp.
239
250
.
8.
Hayes
,
W. C.
, and
Bodine
,
A. J.
,
1978
, “
Flow-Independent Viscoelastic Properties of Articular Cartilage Matrix
,”
J. Biomech.
,
11
, pp.
407
419
.
9.
Grodzinsky
,
A. J.
,
Lipshitz
,
H.
, and
Glimcher
,
M. J.
,
1978
, “
Electromechanical Properties of Articular Cartilage During Compression and Stress Relaxation
,”
Nature (London)
,
275
, pp.
448
450
.
10.
Woo
,
S. L.
,
Simon
,
B. R.
,
Kuei
,
S. C.
, and
Akeson
,
W. H.
,
1980
, “
Quasi-Linear Viscoelastic Properties of Normal Articular Cartilage
,”
ASME J. Biomech. Eng.
,
102
, pp.
85
90
.
11.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
, pp.
73
84
.
12.
Setton
,
L. A.
,
Zhu
,
W.
, and
Mow
,
V. C.
,
1993
, “
The Biphasic Poroviscoelastic Behavior of Articular Cartilage: Role of the Surface Zone in Governing the Compressive Behavior
,”
J. Biomech.
,
26
, pp.
581
592
.
13.
Mizrahi
,
J.
,
Maroudas
,
A.
,
Lanir
,
Y.
,
Ziv
,
I.
, and
Webber
,
T. J.
,
1986
, “
The ‘Instantaneous’ Deformation of Cartilage: Effects of Collagen Fiber Orientation and Osmotic Stress
,”
Biorheology
,
23
, pp.
311
330
.
14.
Cohen
,
B.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1998
, “
A Transversely Isotropic Biphasic Model for Unconfined Compression of Growth Plate and Chondroepiphysis
,”
ASME J. Biomech. Eng.
,
120
, pp.
491
496
.
15.
Bursac
,
P. M.
,
Obitz
,
T. W.
,
Eisenberg
,
S. R.
, and
Stamenovic
,
D.
,
1999
, “
Confined and Unconfined Stress Relaxation of Cartilage: Appropriateness of a Transversely Isotropic Analysis
,”
J. Biomech.
,
32
, pp.
1125
1130
.
16.
Soulhat
,
J.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
,
1999
, “
A Fibril-Network Reinforced Model of Cartilage in Unconfined Compression
,”
ASME J. Biomech. Eng.
,
121
, pp.
340
347
.
17.
Huang
,
C.-Y.
,
Stankiewicz
,
A.
,
Ateshian
,
G. A.
,
Flatow
,
E. L.
,
Bigliani
,
L. U.
, and
Mow
,
V. C.
,
1999
, “
Anisotropy, Inhomogeneity, and Tension-Compression Nonlinearity of Human Glenohumeral Cartilage in Finite Deformation
,”
Trans. Annu. Meet.—Orthop. Res. Soc.
,
24
, p.
95
95
.
18.
Soltz
,
M. A.
,
Palma
,
C.
,
Barsoumian
,
S.
,
Wang
,
C. C.-B.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2000
, “
Multi-Axial Loading of Bovine Articular Cartilage in Unconfined Compression
,”
Trans. Annu. Meet.—Orthop. Res. Soc.
,
25
, p.
888
888
.
19.
Kwan
,
M. K.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1990
, “
A Finite Deformation Theory for Cartilage and Other Soft Hydrated Connective Tissues—I. Equilibrium Results
,”
J. Biomech.
,
23
, pp.
145
155
.
20.
Holmes
,
M. H.
, and
Mow
,
V. C.
,
1990
, “
The Nonlinear Characteristics of Soft Gels and Hydrated Connective Tissues in Ultrafiltration
,”
J. Biomech.
,
23
, pp.
1145
1156
.
21.
Ateshian
,
G. A.
,
Warden
,
W. H.
,
Kim
,
J. J.
,
Grelsamer
,
R. P.
, and
Mow
,
V. C.
,
1997
, “
Finite Deformation Biphasic Material Properties of Bovine Articular Cartilage From Confined Compression Experiments
,”
J. Biomech.
,
30
, pp.
1157
1164
.
22.
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
,
1987
, “
Cartilage Electromechanics—II. A Continuum Model of Cartilage Electrokinetics and Correlation With Experiments
,”
J. Biomech.
,
20
, pp.
629
639
.
23.
Armstrong
,
C. G.
, and
Mow
,
V. C.
,
1982
, “
Variations in the Intrinsic Mechanical Properties of Human Articular Cartilage With Age, Degeneration, and Water Content
,”
J. Bone Jt. Surg., Am. Vol.
,
64A
, pp.
88
94
.
24.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
,
1998
, “
Experimental Verification and Theoretical Prediction of Cartilage Interstitial Fluid Pressurization at an Impermeable Contact Interface in Confined Compression
,”
J. Biomech.
,
31
, pp.
927
934
.
25.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
,
2000
, “
Interstitial Fluid Pressurization During Confined Compression Cyclical Loading of Articular Cartilage
,”
Ann. Biomed. Eng.
,
28
, pp.
150
159
.
26.
Mow
,
V. C.
,
Gibbs
,
M. C.
,
Lai
,
W. M.
,
Zhu
,
W. B.
, and
Athanasiou
,
K. A.
,
1989
, “
Biphasic Indentation of Articular Cartilage—II. A Numerical Algorithm and an Experimental Study
,”
J. Biomech.
,
22
, pp.
853
861
.
27.
Athanasiou
,
K. A.
,
Rosenwasser
,
M. P.
,
Buckwalter
,
J. A.
,
Malinin
,
T. I.
, and
Mow
,
V. C.
,
1991
, “
Interspecies Comparison of in Situ Intrinsic Mechanical Properties of Distal Femoral Cartilage
,”
J. Orthop. Res.
,
9
, pp.
330
340
.
28.
Armstrong
,
C. G.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1984
, “
An Analysis of the Unconfined Compression of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
106
, pp.
165
173
.
29.
Brown
,
T. D.
, and
Singerman
,
R. J.
,
1986
, “
Experimental Determination of the Linear Biphasic Constitutive Coefficients of Human Fetal Proximal Femoral Chondroepiphysis
,”
J. Biomech.
,
19
, pp.
597
605
.
30.
Spilker
,
R. L.
,
Suh
,
J. K.
, and
Mow
,
V. C.
,
1990
, “
Effects of Friction on the Unconfined Compressive Response of Articular Cartilage: a Finite Element Analysis
,”
ASME J. Biomech. Eng.
,
112
, pp.
138
146
.
31.
Kim
,
Y. J.
,
Bonassar
,
L. J.
, and
Grodzinsky
,
A. J.
,
1995
, “
The Role of Cartilage Streaming Potential, Fluid Flow and Pressure in the Stimulation of Chondrocyte Biosynthesis During Dynamic Compression
,”
J. Biomech.
,
28
, pp.
1055
1066
.
32.
Cohen
,
B.
,
Gardner
,
T. R.
, and
Ateshian
,
G. A.
,
1993
, “
The Influence of Transverse Isotropy on Cartilage Indentation Behavior—A Study of the Human Humeral Head
,”
Trans. Annu. Meet.—Orthop. Res. Soc.
,
18
, p.
185
185
.
33.
Lanir
,
Y.
,
1987
, “
Biorheology and Fluid Flux in Swelling Tissues. II. Analysis of Unconfined Compressive Response of Transversely Isotropic Cartilage Disc
,”
Biorheology
,
24
, pp.
189
205
.
34.
Suh
,
J. K.
, and
Bai
,
S.
,
1998
, “
Finite Element Formulation of Biphasic Poroviscoelastic Model for Articular Cartilage
,”
ASME J. Biomech. Eng.
,
120
, pp.
195
201
.
35.
Mak
,
A. F.
,
1986
, “
The Apparent Viscoelastic Behavior of Articular Cartilage—the Contributions From the Intrinsic Matrix Viscoelasticity and Interstitial Fluid Flows
,”
ASME J. Biomech. Eng.
,
108
, pp.
123
130
.
36.
Khalsa
,
P. S.
, and
Eisenberg
,
S. R.
,
1997
, “
Compressive Behavior of Articular Cartilage Is Not Completely Explained by Proteoglycan Osmotic Pressure
,”
J. Biomech.
,
30
, pp.
589
594
.
37.
Curnier
,
A.
,
He
,
Q.-C.
, and
Zysset
,
P.
,
1995
, “
Conewise Linear Elastic Materials
,”
J. Elast.
,
37
, pp.
1
38
.
38.
Ateshian
,
G. A.
,
Wang
,
H.
, and
Lai
,
W. M.
,
1998
, “
The Role of Interstitial Fluid Pressurization and Surface Porosities on the Boundary Friction of Articular Cartilage
,”
ASME J. Tribol.
,
120
, pp.
241
251
.
39.
Cowin
,
S. C.
, and
Mehrabadi
,
M. M.
,
1987
, “
On the Identification of Material Symmetry for Anisotropic Elastic Material
,”
Q. J. Mech. Appl. Math.
,
40
, pp.
451
475
.
40.
Eisenberg
,
S. R.
, and
Grodzinsky
,
A. J.
,
1985
, “
Swelling of Articular Cartilage and Other Connecitve Tissues: Electromechanical Forces
,”
J. Orthop. Res.
,
3
, pp.
148
159
.
41.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
,
1991
, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
113
, pp.
245
258
.
42.
Maroudas
,
A.
, and
Venn
,
M.
,
1977
, “
Chemical Composition and Swelling of Normal and Osteoarthrotic Femoral Head Cartilage. II. Swelling
,”
Ann. Rheum. Dis.
,
36
, pp.
399
406
.
43.
Setton
,
L. A.
,
Tohyama
,
H.
, and
Mow
,
V. C.
,
1998
, “
Swelling and Curling Behavior of Articular Cartilage
,”
J. Biomed. Eng.
,
120
, pp.
355
361
.
44.
Mak
,
A. F.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1987
, “
Biphasic Indentation of Articular Cartilage—I. Theoretical Analysis
,”
J. Biomech.
,
20
, pp.
703
714
.
45.
Ateshian
,
G. A.
,
Lai
,
W. M.
,
Zhu
,
W. B.
, and
Mow
,
V. C.
,
1994
, “
An Asymptotic Solution for the Contact of Two Biphasic Cartilage Layers
,”
J. Biomech.
,
27
, pp.
1347
1360
.
46.
Kvalseth
,
T. O.
,
1985
, “
Cautionary Note About R2,
,”
The American Statistician
,
39
, pp.
279
285
.
47.
Buschmann
,
M. D.
,
Soulhat
,
J.
,
Shirazi-Adl
,
A.
,
Jurvelin
,
J. S.
, and
Hunziker
,
E. B.
,
1998
, “
Confined Compression of Articular Cartilage: Linearity in Ramp and Sinusoidal Tests and the Importance of Interdigitation and Incomplete Confinement
,”
J. Biomech.
,
31
, pp.
171
178
.
48.
Lanir
,
Y.
,
1983
, “
Constitutive Equations for Fibrous Connective Tissues
,”
J. Biomech.
,
16
, pp.
1
12
.
49.
Farquhar
,
T.
,
Dawson
,
P. R.
, and
Torzilli
,
P.
,
1990
, “
A Microstructural Model for the Anisotropic Drained Stiffness of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
112
, pp.
414
425
.
50.
Wren
,
T. A. L.
, and
Carter
,
D. R.
,
1998
, “
A Microstructural Model for the Tensile Constitutive and Failure Behavior of Soft Skeletal Connective Tissues
,”
ASME J. Biomech. Eng.
,
120
, pp.
55
61
.
51.
Ateshian
,
G. A.
, and
Wang
,
H.
,
1995
, “
A Theoretical Solution for the Frictionless Rolling Contact of Cylindrical Biphasic Articular Cartilage Layers
,”
J. Biomech.
,
28
, pp.
1341
1355
.
52.
Kelkar
,
R.
, and
Ateshian
,
G. A.
,
1999
, “
Contact Creep of Biphasic Cartilage Layers: Identical Layers
,”
ASME J. Appl. Mech.
,
66
, pp.
137
145
.
53.
Akizuki
,
S.
,
Mow
,
V. C.
,
Muller
,
F.
,
Pita
,
J. C.
,
Howell
,
D. S.
, and
Manicourt
,
D. H.
,
1986
, “
Tensile Properties of Human Knee Joint Cartilage: I. Influence of Ionic Conditions, Weight Bearing, and Fibrillation on the Tensile Modulus
,”
J. Orthop. Res.
,
4
, pp.
379
392
.
54.
Macirowski
,
T.
,
Tepic
,
S.
, and
Mann
,
R. W.
,
1994
, “
Cartilage Stresses in the Human Hip Joint
,”
ASME J. Biomech. Eng.
,
116
, pp.
11
18
.
55.
McCutchen
,
C. W.
,
1962
, “
The Frictional Properties of Animal Joints
,”
Wear
,
5
, pp.
1
17
.
56.
Forster
,
H.
, and
Fisher
,
J.
,
1996
, “
The Influence of Loading Time and Lubricant on the Friction of Articular Cartilage
,”
ImechE, J. Eng. Med.
,
210
, pp.
109
119
.
57.
Jurvelin
,
J.
,
Buschmann
,
M.
, and
Hunziker
,
E.
,
1997
, “
Optical and Mechanical Determination of Poisson’s Ratio of Adult Bovine Humeral Articular Cartilage
,”
J. Biomech.
,
30
, pp.
235
241
.
58.
Wang
,
C. C.-B.
,
Soltz
,
M. A.
,
Mauck
,
R. L.
,
Valhmu
,
W. B.
,
Ateshian
,
G. A.
, and
Hung
,
C. T.
,
2000
, “
Comparison of the Equilibrium Strain Distribution in Articular Cartilage Explants and Cell Seeded Alginate Disks Under Compression
,”
Trans. Annu. Meet.—Orthop. Res. Soc.
,
25
, p.
131
131
.
59.
Chang
,
D. G.
,
Lottman
,
L. M.
,
Chen
,
A. C.
,
Schinagl
,
R. M.
,
Albrecht
,
D. R.
,
Pedowitz
,
R. A.
,
Brossmann
,
J.
,
Frank
,
L. R.
, and
Sah
,
R. L.
,
1999
, “
The Depth-Dependent, Multi-Axial Properties of Aged Human Patellar Cartilage in Tension
,”
Trans. Annu. Meet.—Orthop. Res. Soc.
,
24
, p.
644
644
.
60.
Elliott
,
D. M.
,
Kydd
,
S. R.
,
Perry
,
C. H.
, and
Setton
,
L. A.
,
1999
, “
Direct Measurement of the Poisson’s Ratio of Human Articular Cartilage in Tension
,”
Trans. Annu. Meet.—Orthop. Res. Soc.
,
24
, p.
649
649
.
61.
Zhu
,
W.
,
Chern
,
K. Y.
, and
Mow
,
V. C.
,
1994
, “
Anisotropic Viscoelastic Shear Properties of Bovine Meniscus
,”
Clin. Orthop.
,
306
, pp.
34
45
.
You do not currently have access to this content.