Axial gas transport due to the interaction between radial mixing and radially nonuniform axial velocities is responsible for gas transport in thick airways during High-frequency oscillatory ventilation (HFO). Because the airways can be characterized by a bifurcating tube network, the secondary flow in the curved portion of a bifurcating tube contributes to cross-stream mixing. In this study the oscillatory flow and concentration fields through a single symmetrical airway bifurcating tube model were numerically analyzed by solving three-dimensional Navier-Stokes and mass concentration equations with the SIMPLER algorithm. The simulation conditions were for a Womersley number, α=9.1 and Reynolds numbers in the parent tube between 200 and 1000, corresponding to Dn2/α4 in the curved portion between 2 and 80, where Dn is Dean number. For comparison with the results from the bifurcating tube, we calculated the velocity and concentration fields for fully developed oscillatory flow through a curved tube with a curvature rate of 1/10, which is identical to the curved portion of the bifurcating tube. For Dn2/α410 in the curved portion of the bifurcating tube, the flow divider and area changes dominate the axial gas transport, because the effective diffusivity is greater than in either a straight or curved tube, in spite of low secondary velocities. However, for Dn2/α420, the gas transport characteristics in a bifurcation are similar to a curved tube because of the significant effect of secondary flow.

1.
Lunkenheimer
,
P. P.
,
Frank
,
I.
,
Ising
,
H.
,
Deller
,
H.
, and
Dickhut
,
H.
,
1972
, “
Intrapulmonaler Gaswechsel Unter Simultierter Apnoe Durch Transtrachealen, Periodishen Intrathorakealen Druckweechsel
,”
Anaesthesist
,
22
, pp.
232
238
.
2.
Bohn
,
D. J.
,
Miyasaka
,
K.
,
Marchak
,
B. E.
,
Thompson
,
W. K.
,
Froese
,
A. B.
, and
Bryan
,
A. C.
,
1980
, “
Ventilation by High Frequency Oscillation
,”
J. Appl. Physiol.: Respir., Environ. Exercise Physiol.
,
48
, No.
4
, pp.
710
716
.
3.
Harris
,
H. G.
, Jr.
, and
Goren
,
S. L.
,
1967
, “
Axial Diffusion in a Cylinder With Pulsed Flow
,”
Chem. Eng. Sci.
,
22
, pp.
1571
1576
.
4.
Watson
,
E. J.
,
1983
, “
Diffusion in Oscillatory Pipe Flow
,”
J. Fluid Mech.
,
133
, pp.
233
244
.
5.
Joshi
,
C. H.
,
Kamm
,
R. D.
,
Drazen
,
J. M.
, and
Slutsky
,
A. S.
,
1983
, “
An Experimental Study of Gas Exchange in Laminar Oscillatory Flow
,”
J. Fluid Mech.
,
133
, pp.
245
254
.
6.
Tarbell
,
J. M.
,
Ultman
,
J. S.
, and
Durlofsky
,
L.
,
1982
, “
Oscillatory Convective Dispersion in a Branching Tube Network
,”
ASME J. Biomech. Eng.
,
104
, pp.
338
342
.
7.
Kamm
,
R. D.
,
Collins
,
J.
,
Whang
,
J.
,
Slutsky
,
A. S.
, and
Greiner
,
M.
,
1984
, “
Gas Transport During Oscillatory Flow in a Network of Branching Tubes
,”
ASME J. Biomech. Eng.
,
106
, pp.
315
320
.
8.
Paloski
,
W. H.
,
Slosberg
,
R. B.
, and
Kamm
,
R. D.
,
1987
, “
Effects of Gas Properties and Waveform Asymmetry on Gas Transport in a Branching Tube Network
,”
J. Appl. Physiol.
,
62
, No.
3
, pp.
892
901
.
9.
Eckmann
,
D. M.
, and
Grotberg
,
J. B.
,
1988
, “
Oscillatory Flow and Mass Transport in a Curved Tube
,”
J. Fluid Mech.
,
188
, pp.
509
527
.
10.
Pedley
,
T. J.
, and
Kamm
,
R. D.
,
1988
, “
The Effect of Secondary Motion on Axial Transport in Oscillatory Tube Flow
,”
J. Fluid Mech.
,
193
, pp.
347
367
.
11.
Sharp
,
M. K.
,
Kamm
,
R. D.
,
Shapiro
,
A. H.
,
Kimmel
,
E.
, and
Karniadakis
,
T. E.
,
1991
, “
Dispersion in a Curved Tube During Oscillatory Tube Flow
,”
J. Fluid Mech.
,
223
, pp.
537
563
.
12.
Batchelor, G. K., 1967, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, pp. 358–364.
13.
Shlichting, H., 1979, Boundary Layer Theory, McGraw-Hill, London, pp. 428–432.
14.
Haselton
,
F. R.
, and
Scherer
,
P. W.
,
1982
, “
Flow Visualization of Steady Streaming in Oscillatory Flow Through a Bifurcating Tube
,”
J. Fluid Mech.
,
123
, pp.
315
333
.
15.
Jan
,
D. L.
,
Shapiro
,
A. H.
, and
Kamm
,
R. D.
,
1989
, “
Some Features of Oscillatory Flow in a Model Bifurcation
,”
J. Appl. Physiol.
,
67
, No.
1
, pp.
147
159
.
16.
Nishida
,
M.
,
Inaba
,
Y.
, and
Tanishita
,
K.
,
1997
, “
Gas Dispersion in a Model Pulmonary Bifurcation During Oscillatory Flow
,”
ASME J. Biomech. Eng.
,
119
, pp.
309
316
.
17.
Pedley
,
T. J.
,
1977
, “
Pulmonary Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
114
, pp.
229
274
.
18.
Yung
,
C. N.
,
De Witt
,
K. J.
, and
Keith
,
T. G.
, Jr.
,
1990
, “
Three-Dimensional Steady Flow Through a Bifurcation
,”
ASME J. Biomech. Eng.
,
112
, pp.
189
197
.
19.
Thiriet
,
M.
,
Pares
,
C.
,
Saltel
,
E.
, and
Hecht
,
F.
,
1992
, “
Numerical Simulation of Steady Flow in a Model of the Aortic Bifurcation
,”
ASME J. Biomech. Eng.
,
114
, pp.
40
49
.
20.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere, London.
21.
Thompson
,
J. F.
, and
A Warsi
,
Z. U.
,
1982
, “
Boundary-Fitted Coordinate Systems for Numerical Solution of Partial Differential Equations—A Review
,”
J. Comput. Phys.
,
47
, pp.
1
108
.
22.
Wilkinson, J. H., 1971, Linear Algebra, Springer-Verlag, New York.
23.
Uchida
,
S.
,
1956
, “
The Pulsating Viscous Flow Superposed on the Steady Laminar Motion of Incompressible Fluid in a Circular Pipe
,”
ZAMP
,
7
, pp.
403
422
.
24.
Ueda, Y., Okaniwa, T., Oka, K., and Tanishita, K., 1996, “Transition to Turbulence in a Bifurcation Airway Model,” Advances in Bioengineering, ASME BED-Vol. 33, pp. 181–182.
25.
Zhao
,
Y.
, and
Lieber
,
B. B.
,
1994
, “
Steady Expiratory Flow in a Model Symmetric Bifurcation
,”
ASME J. Biomech. Eng.
,
116
, pp.
318
323
.
26.
Zhao
,
Y.
, and
Lieber
,
B. B.
,
1994
, “
Steady Inspiratory Flow in a Model Symmetrical Bifurcation
,”
ASME J. Biomech. Eng.
,
116
, pp.
488
496
.
27.
Iida
,
Y.
, and
Shigeta
,
H.
,
1984
, “
Experimental Method to Determine the Heat Production Rate, Thermal Diffusivity, and Conductivity of Solids
,”
Rev. Sci. Instrum.
,
55
, No.
10
, pp.
1648
1653
.
28.
Fujioka, H., Murakami, T., and Tanishita, K., 1995, “New Method to Evaluate the Effective Diffusivity in an Oscillatory Flow Through a Bifurcating Airway Model,” Advances in Bioengineering, ASME BED-Vol. 31, pp. 221–222.
29.
Heistracher
,
T.
, and
Hofmann
,
W.
,
1995
, “
Physiologically Realistic Model of Bronchial Airway Bifurcations
,”
J. Aerosol Sci.
,
26
, No.
3
, pp.
497
509
.
You do not currently have access to this content.