Due to ready availability, decreased cost, and freedom from transmissible diseases in humans such as hepatitis and AIDS, it would be advantageous to use tendon grafts from farm animals as a substitute for human tendon grafts in in vitro experiments aimed at improving the outcome of anterior cruciate ligament (ACL) reconstructive surgery. Thus the objective of this study was to determine whether an anterior cruciate ligament (ACL) graft composed of two loops of bovine common digital extensor tendon has the same viscoelastic, structural, and material properties as a graft composed of a double loop of semitendinosus and gracilis tendons from humans. To satisfy this objective, grafts were constructed from each tissue source. The cross-sectional area was measured using an area micrometer, and each graft was then pulled using a materials testing system while submerged in a saline bath. Using two groups of tendon grafts n=10, viscoelastic tests were conducted over a three-day period during which a constant displacement load relaxation test was followed by a constant amplitude, cyclic load creep test (first day), a constant load creep test (second day), and an incremental cyclic load creep test (third day). Load-to-failure tests were performed on two different groups of grafts n=8. When the viscoelastic behavior was compared, there were no significant differences in the rate of load decay or the final load (relaxation test) and rates of displacement increase or final displacements (creep tests) p>0.115. To compare both the structural and material properties in the toe region (i.e., <250 N) of the load-elongation curve, the tangent stiffness and modulus functions were computed from parameters used in an exponential model fit to the load (stress)—elongation (strain) data. Although one of the two parameters in the functions was different statistically, this difference translated into a difference of only 0.03 mm in displacement at 250 N of load. In the linear region (i.e., 50–75 percent of ultimate load) of the load-elongation curve, the linear stiffness of the two graft types compared closely (444 N/mm for bovine and 418 N/mm for human) p=0.341. At failure, the ultimate loads (2901 N and 2914 N for bovine and human, respectively) and the ultimate stresses (71.8 MPa and 65.6 MPa for bovine and human, respectively) were not significantly different p>0.261. The theoretical effect of any differences in properties between these two grafts on the results of two types of in vitro experiments (i.e., effect of surgical variables on knee laxity and structural properties of fixation devices) are discussed. Despite some statistical differences in the properties evaluated, these differences do not translate into important effects on the dependent variables of interest in the experiments. Thus the bovine tendon graft can be substituted for the human tendon graft in both types of experiments.

1.
Brown
,
C. H.
,
Steiner
,
M. E.
, and
Carson
,
E. W.
,
1993
, “
The Use of Hamstring Tendons for Anterior Cruciate Ligament Reconstruction: Technique and Results
,”
Clin. Sports Med.
,
12
, pp.
723
736
.
2.
Howell
,
S. M.
, and
Gottlieb
,
J. E.
,
1996
, “
Endoscopic Fixation of a Double–Looped Semitendinosus and Gracilis ACL Graft Using a Bone Mulch Screw
,”
Oper. Tech. Orthop.
,
6
, pp.
152
160
.
3.
Liu
,
S. H.
,
Kabo
,
J. M.
, and
Osti
,
L.
,
1995
, “
Biomechanics of Two Types of Bone-Tendon-Bone Grafts for ACL Reconstruction
,”
J. Bone Jt. Surg.
,
77B
, pp.
232
235
.
4.
Magen
,
H. E.
,
Howell
,
S. M.
, and
Hull
,
M. L.
,
1999
, “
Structural Properties of Six Tibial Fixation Methods for Anterior Cruciate Ligament Soft Tissue Grafts
,”
Am. J. Sports Med.
,
27
, pp.
35
43
.
5.
To
,
J. T.
,
Howell
,
S. M.
, and
Hull
,
M. L.
,
1999
, “
Contributions of Femoral Fixation Methods to the Stiffness of Anterior Cruciate Ligament Replacements at Implantation
,”
J. Arth. Relat. Res.
,
15
, pp.
379
387
.
6.
Eagar
,
P. J.
,
Howell
,
S. M.
, and
Hull
,
M. L.
,
1998
, “
Effect of Fixation Method Stiffness and Graft Pretension on Restoring Normal Load-Displacement Behavior to the Knee With an ACL Reconstruction Using a Hamstrings Graft
,”
ORS Trans.
,
24
, p.
939
939
.
7.
Hamner
,
D. L.
,
Brown
, Jr.,
C. H.
,
Steiner
,
M. E.
,
Hecker
,
A. T.
, and
Hayes
,
W. C.
,
1999
, “
Hamstring Tendon Grafts for Reconstruction of the Anterior Cruciate Ligament: Biomechanical Evaluation of the Use of Multiple Strands and Tensioning Techniques
,”
J. Bone Jt. Surg.
,
81-A
, pp.
549
557
.
8.
Woo
,
S. L. Y.
,
Gomez
,
M. A.
, and
Akeson
,
W. H.
,
1981
, “
The Time and History-Dependent Viscoelastic Properties of the Canine Medial Collateral Ligament
,”
ASME J. Biomech. Eng.
,
103
, pp.
293
298
.
9.
Kwan
,
M. K.
,
Lin
,
T. H.
, and
Woo
,
S. L. Y.
,
1993
, “
On the Viscoelastic Properties of the Anterormedial Bundle of the Anterior Cruciate Ligament
,”
J. Biomech.
,
26
, pp.
447
452
.
10.
McMaster
,
W. C.
,
1986
, “
Mechanical Properties and Early Clinical Experience With Xenograft Biomaterials
,”
Bulletin of the Hospital for Joint Diseases Orthopedic Institute
,
46
, pp.
174
184
.
11.
Allen
,
P. R.
,
Amis
,
A. A.
,
Jones
,
M. M.
, and
Heatley
,
F. W.
,
1987
, “
Evaluation of Preserved Bovine Tendon Xenografts: A Histological, Biomechanical and Clinical Study
,”
Biomaterials
,
8
, pp.
146
152
.
12.
Milthorpe
,
B. K.
,
1994
, “
Xenografts for Tendon and Ligament Repair
,”
Biomaterials
,
15
, pp.
745
752
.
13.
Ellis
,
D. G.
,
1969
, “
Cross-Sectional Area Measurements of Tendon Specimens: a Comparison of Several Methods
,”
J. Biomech.
,
2
, p.
175
175
.
14.
Noyes
,
F. R.
,
Butler
,
D. L.
,
Grood
,
E. S.
,
Zernicke
,
R. F.
, and
Hefzy
,
M. S.
,
1984
, “
Biomechanical Analysis of Human Ligament Grafts Used in Knee-Ligament Repairs and Reconstructions
,”
J. Bone Jt. Surg.
,
66-A
, pp.
344
352
.
15.
Goss
,
B. C.
,
Hull
,
M. L.
, and
Howell
,
S. M.
,
1997
, “
Contact Pressure and Tension in Anterior Cruciate Ligament Grafts Subjected to Roof Impingement During Passive Knee Extension
,”
J. Orthop. Res.
,
15
, pp.
263
268
.
16.
Pioletti
,
D. P.
,
Rakotomanana
,
L. R.
, and
Leyvraz
,
P. F.
,
1999
, “
Strain Rate Effect on the Mechanical Behavior of the Anterior Cruciate Ligament-Bone Complex
,”
Med. Eng. Phys.
,
21
, pp.
95
100
.
17.
Wallace
,
M. P.
,
Howell
,
S. M.
, and
Hull
,
M. L.
,
1997
, “
In Vivo Tensile Behavior of a Four-Bundle Hamstring Graft as a Replacement for the Anterior Cruciate Ligament
,”
J. Orthop. Res.
,
15
, pp.
539
545
.
18.
Lam
,
T. C.
,
Frank
,
C. B.
, and
Shrive
,
N. G.
,
1992
, “
Calibration Characteristics of a Video Dimension Analyser (VDA) System
,”
J. Biomech.
,
25
, pp.
1227
1231
.
19.
Lam
,
T. C.
,
Shrive
,
N. G.
, and
Frank
,
C. B.
,
1995
, “
Variations in Rupture Site and Surface Strains at Failure in the Maturing Rabbit Medial Collateral Ligament
,”
ASME J. Biomech. Eng.
,
117
, pp.
455
461
.
20.
Graf
,
B. K.
,
Vanderby
, Jr.,
R.
,
Ulm
,
M. J.
,
Rogalski
,
R. P.
, and
Thielke
,
R. J.
,
1994
, “
Effect of Preconditioning on the Viscoelastic Response of Primate Patellar Tendon
,”
Arthroscopy
,
10
, pp.
90
96
.
21.
Johnson
,
G. A.
,
Tramaglini
,
D. M.
,
Levine
,
R. E.
,
Ohno
,
K.
,
Choi
,
N. Y.
, and
Woo
,
S. L. Y.
,
1994
, “
Tensile and Viscoelastic Properties of Human Patellar Tendon
,”
J. Orthop. Res.
,
12
, pp.
796
803
.
22.
Smith
,
B. A.
,
Livesay
,
G. A.
, and
Woo
,
S. L. Y.
,
1993
, “
Biology and Biomechanics of the Anterior Cruciate Ligament
,”
Clin. Sports Med.
,
12
, pp.
637
670
.
23.
Butler
,
D. L.
,
Kay
,
M. D.
, and
Stouffer
,
D. C.
,
1986
, “
Comparison of Material Properties in Fascicle-Bone Units From Human Patellar Tendon and Knee Ligaments
,”
J. Biomech.
,
19
, pp.
425
432
.
24.
Good
,
L.
,
Tarlow
,
S. D.
,
Odensten
,
M.
, and
Gillquist
,
J.
,
1990
, “
Load Tolerance, Security, and Failure Modes of Fixation Devices for Synthetic Knee Ligaments
,”
Clin. Orthop. Relat. Res.
,
253
, pp.
190
196
.
25.
Steiner
,
M. E.
,
Hecker
,
A. T.
,
Brown
,
C. H. J.
, and
Hayes
,
W. C.
,
1994
, “
Anterior Cruciate Ligament Graft Fixation: Comparison of Hamstring and Patellar Tendon Grafts
,”
Am. J. Sports Med.
,
22
, pp.
240
246
.
26.
Robertson
,
D. B.
,
Daniel
,
D. M.
, and
Biden
,
E.
,
1986
, “
Soft Tissue Fixation to Bone
,”
Am. J. Sports Med.
,
14
, pp.
398
403
.
You do not currently have access to this content.