The anulus fibrosus (AF) of the intervertebral disc exhibits spatial variations in structure and composition that give rise to both anisotropy and inhomogeneity in its material behaviors in tension. In this study, the tensile moduli and Poisson’s ratios were measured in samples of human AF along circumferential, axial, and radial directions at inner and outer sites. There was evidence of significant inhomogeneity in the linear-region circumferential tensile modulus (17.4±14.3 MPa versus 5.6±4.7 MPa, outer versus inner sites) and the Poisson’s ratio ν21 (0.67±0.22 versus 1.6±0.7, outer versus inner), but not in the axial modulus (0.8±0.9 MPa) or the Poisson’s ratios ν12 (1.8±1.4) or ν13 (0.6±0.7). These properties were implemented in a linear anisotropic material model of the AF to determine a complete set of model properties and to predict material behaviors for the AF under idealized kinematic states. These predictions demonstrate that interactions between fiber populations in the multilamellae AF significantly contribute to the material behavior, suggesting that a model for the AF as concentric and physically isolated lamellae may not be appropriate.

1.
Coventry
,
M. B.
,
Ghormley
,
R. K.
, and
Kernohan
,
J. W.
,
1945
, “
Intervertebral Disc—Its Microscopic Anatomy and Pathology—Part I: Anatomy, Development and Physiology.
J. Bone Joint Surg. Am.
,
27
, No.
1
, pp.
105
112
.
2.
Ayad, S., and Sandell, L. J., 1996, “Collagens of the Intervertebral Disc: Structure, Function, and Changes During Aging and Disease,” in: Low Back Pain: A Scientific and Clinical Overview, J. N. Weinstein and S. L. Gordon, eds., American Academy of Orthopaedic Surgeons, Rosemont, IL, pp. 539–556.
3.
Bayliss, M. T., and Johnstone, B., 1992, “Biochemistry of the Intervertebral Disc,” in: The Lumbar Spine and Back Pain, M. I. V. Jayson and A. S. J. Dixon, eds., Churchill Liningstone, London, pp. 111–131.
4.
Cassidy
,
J. J.
,
Hiltner
,
A.
, and
Baer
,
E.
,
1989
, “
Hierarchical Structure of the Intervertebral Disc
,”
Connect. Tissue Res.
,
23
, pp.
75
88
.
5.
Eyre
,
D. R.
,
1979
, “
Biochemistry of the Intervertebral Disc
,”
Connect. Tissue Res.
,
8
, pp.
227
291
.
6.
Marchand
,
F.
, and
Ahmed
,
A. M.
,
1990
, “
Investigation of the Laminate Structure of Lumbar Disc Annulus Fibrosus
,”
Spine
,
15
, No.
5
, pp.
402
410
.
7.
Acaroglu
,
E. R.
,
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
, et al.
,
1995
, “
Degeneration and Aging Affect the Tensile Behavior of Human Lumbar Annulus Fibrosus
,”
Spine
,
20
, No.
24
, pp.
2690
2701
.
8.
Duncan, N. A., Ashford, F. A., and Lotz, J. C., 1996, “The Effect of Strain Rate on the Axial Stress–Strain Response of the Human Annulus Fibrosus in Tension and Compression: Experiment and Poroelastic Finite Element Predictions,” Advances in Bioengineering, ASME BED-Vol. 33, pp. 401–402.
9.
Ebara
,
S.
,
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
, et al.
,
1996
, “
Tensile Properties of Nondegenerate Human Lumbar Anulus Fibrosus
,”
Spine
,
21
, No.
4
, pp.
452
461
.
10.
Fujita
,
Y.
,
Duncan
,
N. A.
, and
Lotz
,
J.
,
1997
, “
Radial Tensile Properties of the Lumbar Anulus Fibrosus Are Site and Degeneration Dependent
,”
J. Orthop. Res.
,
15
, pp.
814
819
.
11.
Galante
,
J.
,
1967
, “
Tensile Properties of the Human Lumbar Annulus Fibrosus
,”
Acta Orthop. Scand. Suppl.
,
100
, pp.
1
91
.
12.
Elliott
,
D. M.
, and
Setton
,
L. A.
,
2000
, “
A Linear Material Model for Fiber-Induced Anisotropy of the Anulus Fibrosus
,”
ASME J. Biomech. Eng.
,
122
, pp.
173
179
.
13.
Goel
,
V. K.
,
Kim
,
Y. E.
,
Lim
,
T. H.
, and
Weinstein
,
J. N.
,
1988
, “
Analytical Investigation of the Mechanics of Spinal Instrumentation
,”
Spine
,
13
, No.
9
, pp.
1003
1011
.
14.
Klisch
,
S. M.
, and
Lotz
,
J. C.
,
1999
, “
Application of a Fiber-Reinforced Continuum Theory to Multiple Deformations of the Annulus Fibrosus
,”
J. Biomech.
,
32
, pp.
1027
1036
.
15.
Natarajan
,
R. N.
,
Ke
,
J. H.
, and
Andersson
,
G. B. J.
,
1994
, “
A Model to Study the Disc Degeneration Process
,”
Spine
,
19
, No.
3
, pp.
259
265
.
16.
Shirazi-Adl
,
S. A.
,
Shrivastava
,
S. C.
, and
Ahmed
,
A. M.
,
1984
, “
Stress Analysis of the Lumbar Disc-Body Unit in Compression: A 3D Nonlinear Finite Element Study
,”
Spine
,
9
, No.
2
, pp.
120
134
.
17.
Shirazi-Adl
,
A.
,
1994
, “
Nonlinear Stress Analysis of the Whole Lumbar Spine in Torsion—Mechanics of Facet Articulation
,”
J. Biomech.
,
27
, No.
3
, pp.
289
299
.
18.
Spilker
,
R. L.
,
Jakobs
,
D. M.
, and
Schultz
,
A. B.
,
1986
, “
Material Constants for a Finite Element Model of the Intervertebral Disc With a Fiber Composite Annulus
,”
ASME J. Biomech. Eng.
,
108
, pp.
1
11
.
19.
Wu
,
H. C.
, and
Yao
,
R. F.
,
1976
, “
Mechanical Behavior of the Human Annulus Fibrosus
,”
J. Biomech.
,
9
, pp.
1
7
.
20.
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Rawlins
,
B. A.
, et al.
,
1998
, “
Degeneration Affects the Anisotropic and Nonlinear Behaviors of Human Anulus Fibrosus in Compression
,”
J. Biomech.
,
31
, pp.
535
544
.
21.
Fujita
,
Y.
,
Duncan
,
N. A.
, and
Lotz
,
J. C.
,
1996
, “
Anisotropic Shear Behavior of the Annulus Fibrosus: Effect of Harvest Site and Tissue Prestrain
,”
Trans. Annu. Meet. — Orthop. Res. Soc.
,
21
, p.
271
271
.
22.
Iatridis, J. C., Kumar, S., Krishnan, L., Rawlins, B. A., et al., 1996, “Shear Mechanical Behavior of the Human Lumbar Anulus Fibrosus and the Effects of Degeneration,” Advances in Bioengineering, ASME BED-Vol. 33, pp. 149–150.
23.
Thompson
,
J. P.
,
Pearce
,
R. H.
,
Schechter
,
M. T.
,
Adams
,
M. E.
, et al.
,
1990
, “
Preliminary Evaluation of a Scheme for Grading the Gross Morphology of the Human Intervertebral Disc
,”
Spine
,
15
, No.
5
, pp.
411
415
.
24.
Elliott
,
D. M.
,
Guilak
,
F.
,
Vail
,
T. P.
,
Wang
,
J. Y.
, et al.
,
1999
, “
Tensile Properties of Articular Cartilage Are Altered by Meniscectomy in a Canine Model of Osteoarthritis
,”
J. Orthop. Res.
,
17
, No.
4
, pp.
503
508
.
25.
Fung, Y. C., 1994, A First Course in Continuum Mechanics, 3rd ed., Prentice Hall, Englewood Cliffs, NJ.
26.
Spencer, A. J. M., 1984, “Constitutive Theory for Strongly Anisotropic Solids,” Continuum Theory of the Mechanics of Fibre-Reinforced Composites, A. J. M. Spencer, ed., Springer-Verlag, New York, pp. 1–32.
27.
Iatridis
,
J. C.
,
Kumar
,
S.
,
Foster
,
R. J.
,
Weidenbaum
,
M.
, et al.
,
1999
, “
Shear Mechanical Properties of Human Lumbar Annulus Fibrosus
,”
J. Orthop. Res.
,
7
, No.
5
, pp.
732
737
.
28.
Elliott, D. M., and Setton, L. A., 1999, “Direct Measurement of a Complete Set of Orthotropic Material Properties for the Human Anulus Fibrosus in Tension,” Bioengineering Conference, ASME BED-Vol. 42, pp. 75–76.
29.
Lai, W. M., Rubin, D., and Kremple, E., 1993, Introduction to Continuum Mechanics; Pergamon Press, New York.
30.
Ting, T. C. T., 1996, Anisotropic Elasticity, Oxford University Press, New York.
31.
Best
,
B. A.
,
Guilak
,
F.
,
Setton
,
L. A.
,
Zhu
,
W.
, et al.
,
1994
, “
Compressive Mechanical Properties of the Human Anulus Fibrosus and Their Relationship to Biochemical Composition
,”
Spine
,
19
, No.
2
, pp.
212
221
.
32.
Drost
,
M. R.
,
Willems
,
P.
,
Snijders
,
H.
,
Huyghe
,
J. M.
et al.
,
1995
, “
Confined Compression of Canine Annulus Fibrosus Under Chemical and Mechanical Loading
,”
ASME J. Biomech. Eng.
,
117
, pp.
390
396
.
33.
Ateshian, G. A., and Soltz, M. A., 1999, “A Biphasic Conewise Linear Elasticity Model for Modeling Tension-Compression Nonlinearity in Articular Cartilage,” Bioengineering Conference, ASME BED-Vol. 42, pp. 69–70.
34.
Li
,
L. P.
,
Soulhat
,
J.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
,
1999
, “
Nonlinear Analysis of Cartilage in Unconfined Ramp Compression Using a Fibril Reinforced Poroelastic Model
,”
Clin. Biomech. (Bristol, Avon)
,
14
, No.
9
, pp.
673
682
.
You do not currently have access to this content.