We used a simple model of passive dynamic walking, with the addition of active powering on level ground, to study the preferred relationship between speed and step length in humans. We tested several hypothetical metabolic costs, with one component proportional to the mechanical work associated with pushing off with the stance leg at toe-off, and another component associated with several possible costs of forcing oscillations of the swing leg. For this second component, a cost based on the amount of force needed to oscillate the leg divided by the time duration of that force predicts the preferred speed–step length relationship much better than other costs, such as the amount of mechanical work done in swinging the leg. The cost of force/time models the need to recruit fast muscle fibers for large forces at short durations. The actual mechanical work performed by muscles on the swing leg appears to be of relatively less importance, although it appears to be minimized by the use of short bursts of muscle activity in near-isometric conditions. The combined minimization of toe-off mechanical work and force divided by time predicts the preferred speed–step length relationship.

1.
Atzler
,
E.
, and
Herbst
,
R.
,
1927
, “
Arbeitsphysiologische studien
,”
Pfluegers Arch. Gesamte Physiol. Menschen Tiere
,
215
, pp.
291
328
.
2.
Elftman
,
H.
,
1966
, “
Biomechanics of Muscle
,”
J. Bone Jt. Surg.
,
48-A
, pp.
363
377
.
3.
Zarrugh
,
M. Y.
,
Todd
,
F. N.
, and
Ralston
,
H. J.
,
1974
, “
Optimization of Energy Expenditure During Level Walking
,”
Eur. J. Appl. Physiol.
,
33
, pp.
293
306
.
4.
Grieve
,
D. W.
,
1968
, “
Gait Patterns and the Speed of Walking
,”
Biomed. Eng.
3
, pp.
119
122
.
5.
Cotes
,
J. E.
, and
Meade
,
F.
,
1960
, “
The Energy Expenditure and Mechanical Energy Demand in Walking
,”
Ergonomics
,
3
, pp.
97
119
.
6.
Cavagna
,
G. A.
, and
Margaria
,
R.
,
1966
, “
Mechanics of Walking
,”
J. Appl. Phys.
,
21
, pp.
271
278
.
7.
Cavagna
,
G. A.
, and
Kaneko
,
M.
,
1977
, “
Mechanical Work and Efficiency in Level Walking and Running
,”
J. Physiol. (London)
,
268
, pp.
467
481
.
8.
Cavagna
,
G. A.
, and
Franzetti
,
P.
,
1986
, “
The Determinants of the Step Frequency in Walking in Humans
,”
J. Physiol. (London)
,
373
, pp.
235
242
.
9.
Minetti
,
A.
,
Capelli
,
C.
,
Zamparo
,
P.
,
Prampero
,
P. E. di
, and
Saibene
,
F.
,
1995
, “
Effects of Stride Frequency on Mechanical Power and Energy Expenditure of Walking
,”
Med. Sci. Sports Exercise
,
27
, pp.
1194
1202
.
10.
Minetti
,
A. E.
, and
Saibene
,
F.
,
1992
, “
Mechanical Work Minimization and Freely Chosen Stride Frequency of Human Walking: A Mathematical Model
,”
J. Exp. Biol.
,
170
, pp.
19
34
.
11.
Willems
,
P. A.
,
Cavagna
,
G. A.
, and
Heglund
,
N. C.
,
1995
, “
External, Internal, and Total Work in Human Locomotion
,”
J. Exp. Biol.
,
198
, pp.
379
393
.
12.
Williams
,
K. R.
, and
Cavanagh
,
P. R.
,
1983
, “
A Model for the Calculation of Mechanical Power During Distance Running
,”
J. Biomech.
,
16
, pp.
115
128
.
13.
Minetti
,
A. E.
, and
Alexander
,
R. M.
,
1997
, “
A Theory of Metabolic Costs for Bipedal Gaits
,”
J. Theor. Biol.
,
186
, pp.
467
476
.
14.
Alexander
,
R. M.
,
1992
, “
A Model of Bipedal Locomotion on Compliant Legs
,”
Philos. Trans. R. Soc. London, Ser. B
,
38
, pp.
189
198
.
15.
Alexander, R. M., 1976, “Mechanics of Bipedal Locomotion,” in: Perspectives in Exp. Biology 1, pp. 493–504, Davies, P. S., ed., Pergamon, Oxford.
16.
Alexander
,
R. M.
,
1995
, “
Simple Models of Human Motion
,”
Appl. Mech. Rev.
,
48
, pp.
461
469
.
17.
Mochon
,
S.
, and
McMahon
,
T. A.
,
1980
, “
Ballistic Walking: An Improved Model
,”
Math. Biosci.
,
52
, pp.
241
260
.
18.
McGeer
,
T.
,
1990
, “
Passive Dynamic Walking
,”
Int. J. Robot. Res.
,
9
, pp.
68
82
.
19.
Alexander
,
R. M.
,
1989
, “
Optimization and Gaits in the Locomotion of Vertebrates
,”
Physiol. Rev.
,
69
, pp.
1199
1227
.
20.
Garcia
,
M.
,
Chatterjee
,
A.
,
Ruina
,
A.
, and
Coleman
,
M.
,
1998
, “
The Simplest Walking Model: Stability, Complexity, and Scaling
,”
ASME J. Biomech. Eng.
,
120
, pp.
281
288
.
21.
Garcia
,
M.
,
Chatterjee
,
A.
, and
Ruina
,
A.
,
2000
, “
Efficiency, Speed, and Scaling of Passive Dynamic Walking
,”
Dyn. and Stab. Syst.
,
15
, pp.
75
99
.
22.
Kuo, A. D., 1999, “Efficiency of Actively Powered Locomotion Using the Simplest Walking Model,” ASME J. Biomech. Engng., submitted.
23.
Kram
,
R.
, and
Taylor
,
C. R.
,
1990
, “
Energetics of Running: A New Perspective
,”
Nature (London)
,
346
, pp.
265
267
.
24.
Kuo
,
A. D.
,
1999
, “
Stabilization of Lateral Motion in Passive Dynamic Walking
,”
Int. J. Robot. Res.
,
18
, pp.
917
930
.
25.
Alexander
,
R. M.
,
1991
, “
Energy-Saving Mechanisms in Walking and Running
,”
J. Exp. Biol.
,
160
, pp.
55
69
.
You do not currently have access to this content.