The total cavopulmonary connection (TCPC) has shown great promise as an effective palliation for single-ventricle congenital heart defects. However, because the procedure results in complete bypass of the right-heart, fluid dynamic power losses may play a vital role in postoperative patient success. Past research has focused on determining power losses using control volume methods. Such methods are not directly applicable clinically without highly invasive pressure measurements. This work proposes the use of the viscous dissipation function as a tool for velocity gradient based estimation of fluid dynamic power loss. To validate this technique, numerical simulations were conducted in a model of the TCPC incorporating a 13.34 mm (one caval diameter) caval offset and a steady cardiac output of 2Ls˙min1. Inlet flow through the superior vena cava was 40 percent of the cardiac output, while outflow through the right pulmonary artery (RPA) was varied between 30 and 70 percent, simulating different blood flow distributions to the lungs. Power losses were determined using control volume and dissipation function techniques applied to the numerical data. Differences between losses computed using these techniques ranged between 3.2 and 9.9 percent over the range of RPA outflows studied. These losses were also compared with experimental measurements from a previous study. Computed power losses slightly exceeded experimental results due to different inlet flow conditions. Although additional experimental study is necessary to establish the clinical applicability of the dissipation function, it is believed that this method, in conjunction with velocity gradient information derived from imaging modalities such as magnetic resonance imaging, can provide a noninvasive means of assessing power losses within the TCPC in vivo.

1.
de Leval
,
M. R.
,
Kilner
,
P.
,
Gewillig
,
M.
, and
Bull
,
C.
,
1988
, “
Total Cavo- pulmonary Connection: A Logical Alternative to Atriopulmonary Connection for Complex Fontan Operations. Experimental Studies and Early Clinical Experience
,”
J. Thorac. Cardiovasc. Surg.
,
96
, pp.
682
695
.
2.
Jonas
,
R. A.
, and
Castaneda
,
A. R.
,
1988
, “
Modified Fontan Procedure: Atrial Baffle and Systemic to Pulmonary Artery Anastomosis Technique
,”
J. Card. Surg.
,
3
, pp.
91
96
.
3.
Puga
,
F. I.
,
Chiavarelli
,
M.
, and
Hagler
,
D. J.
,
1987
, “
Modifications of the Fontan Operation Applicable to Patients With the Left Atrioventricular Valve Atresia or Single Atrioventricular Valve
,”
Circulation
,
76
, pp.
III-53–III-60
III-53–III-60
.
4.
de Leval
,
M. R.
,
1998
, “
The Fontan Circulation: What Have We Learned? What to Expect?
Pediatr. Cardiol.
,
19
, pp.
316
320
.
5.
Sharma
,
S.
,
Goudy
,
S.
,
Walker
,
P.
,
Panchal
,
S.
,
Ensley
,
A.
,
Kanter
,
K.
,
Tam
,
V.
,
Fyfe
,
D.
, and
Yoganathan
,
A.
,
1996
, “
In Vitro Flow Experiments for Determination of Optimal Geometry of Total Cavopulmonary Connection for Surgical Repair of Children With Functional Single Ventricle
,”
J. Am. Coll. Cardiol.
,
27
, pp.
1264
1269
.
6.
Gerdes
,
A.
,
Kunze
,
J.
,
Pfister
,
G.
, and
Sievers
,
H.
,
1999
, “
Addition of a Small Curvature Reduces Power Losses Across Total Cavopulmonary Connections
,”
Ann. Thoracic Surgery
,
67
, pp.
1760
1764
.
7.
Ensley
,
A. E.
,
Lynch
,
P.
,
Chatzimavroudis
,
G. P.
,
Lucas
,
C.
,
Sharma
,
S.
, and
Yoganathan
,
A. P.
,
1999
, “
Toward Designing the Optimal Total Cavopulmonary Connection: An In Vitro Study
,”
Ann. Thoraci Surgery
,
68
, pp.
1384
1390
.
8.
Lardo
,
A. C.
,
Webber
,
S. A.
,
Friehs
,
I.
,
del Nido
,
P. J.
, and
Cape
,
E. G.
,
1999
, “
Fluid Dynamic Comparison of Intra-Atrial and Extracardiac Total Cavopulmonary Connections
,”
J. Thorac. Cardiovasc. Surg.
,
117
, pp.
697
704
.
9.
Ketner, M., Lucas, C., Masters, J., Mill, M., Lucas, W., Sadoff, J., Kiser, A., Hoffman, S., Yoganathan, A., and Ensley, A., 1999, “Energy Gains/Losses of Normal and Fontan Circulations in Lambs Under Varying Respiration Parameters,” Proc. Annual International Conference of the IEEE Engineering in Medicine and Biology, Vol. 1, p. 249.
10.
Dubini
,
G.
,
de Leval
,
M. R.
,
Pietrabissa
,
R.
,
Montevecchi
,
F. M.
, and
Fumero
,
R.
,
1996
, “
A Numerical Fluid Mechanical Study of Repaired Congenital Heart Defects: Application to the Total Cavopulmonary Connection
,”
J. Biomech.
,
29
, pp.
111
121
.
11.
de Leval
,
M. R.
,
Dubini
,
G.
,
Migliavacca
,
F.
,
Jalali
,
H.
,
Camporini
,
G.
,
Redington
,
A.
, and
Pietrabissa
,
R.
,
1996
, “
Surgery for Congenital Heart Disease
,”
J. Thorac. Cardiovasc. Surg.
,
111
, pp.
502
513
.
12.
Migliavacca
,
F.
,
Kilner
,
P. J.
,
Pennati
,
G.
,
Dubini
,
G.
,
Pietrabissa
,
R.
,
Fumero
,
R.
, and
de Leval
,
M. R.
,
1999
, “
Computational Fluid Dynamics and Magnetic Resonance Analysis of Flow Distribution Between the Lungs After Total Cavopulmonary Connection
,”
IEEE Trans. Biomed. Eng.
,
46
, pp.
393
399
.
13.
Sheu
,
T. W. H.
,
Tsai
,
S. F.
,
Hwang
,
W. S.
, and
Chang
,
T. M.
,
1999
, “
A Finite Element Study of the Blood Flow in Total Cavopulmonary Connection
,”
Comput. Fluids
,
28
, pp.
19
39
.
14.
Munson, B. R., Young, D. F., and Okiishi, T. H., 1994, Fundamentals of Fluid Mechanics, Wiley, New York.
15.
Ku
,
D. N.
,
Biancheri
,
C. L.
,
Pettigrew
,
R. I.
,
Peifer
,
J. W.
,
Markou
,
C. P.
, and
Engels
,
H.
,
1990
, “
Evaluation of Magnetic Resonance Velocimetry for Steady Flow
,”
ASME J. Biomech. Eng.
,
112
, pp.
464
472
.
16.
Newling
,
B.
,
Gibbs
,
S. J.
,
Derbyshire
,
J. A.
,
Xing
,
D.
,
Hall
,
L. D.
,
Haycock
,
D. E.
,
Frith
,
W. J.
, and
Ablett
,
S.
,
1997
, “
Comparison of Magnetic Resonance Imaging Velocimetry With Computational Fluid Dynamics
,”
ASME J. Fluids Eng.
,
119
, pp.
103
109
.
17.
Weston
,
S. J.
,
Wood
,
N. B.
,
Tabor
,
G.
,
Gosman
,
A. D.
, and
Firmin
,
D. N.
,
1998
, “
Combined MRI and CFD Analysis of Fully Developed Steady and Pulsatile Laminar Flow Through a Bend
,”
J. Magn. Reson. Imaging
,
8
, pp.
1158
1171
.
18.
Currie, I. G., 1993, Fundamental Mechanics of Fluids, McGraw-Hill, New York.
19.
Ringgaard
,
S.
,
Botnar
,
R. M.
,
Djurhuus
,
C.
,
Stodkilde-Jorgensen
,
H.
,
Hasenkam
,
J. M.
,
Boesiger
,
P.
, and
Pedersen
,
E. M.
,
1999
, “
High-Resolution Assessment of Velocity Fields and Shear Stresses Distal to Prosthetic Heart Valves Using High-Field Magnetic Resonance Imaging
,”
J. Heart Valve Dis.
,
8
, pp.
96
103
.
20.
Morgan
,
V. L.
,
Roselli
,
R. J.
, and
Lorenz
,
C. H.
,
1998
, “
Normal Three-Dimensional Pulmonary Artery Flow Determined by Phase Contrast Magnetic Resonance Imaging
,”
Ann. Biomed. Eng.
,
26
, pp.
557
566
.
21.
Merrill
,
E. W.
, and
Pelletier
,
G. A.
,
1967
, “
Viscosity of Human Blood: Transition From Newtonian to Non-Newtonian
,”
J. Appl. Physiol.
,
23
, pp.
178
182
.
22.
Salim
,
M. A.
,
DiSessa
,
T. G.
,
Arheart
,
K. L.
, and
Alpert
,
B. S.
,
1995
, “
Contribution of Superior Vena Caval Flow to Total Cardiac Output in Children
,”
Circulation
,
92
, pp.
1860
1865
.
23.
Houlind
,
K.
,
Stenbog
,
E. V.
,
Emmertsen
,
K.
,
Hansen
,
O. K.
,
Rybro
,
L.
, and
Hjortdal
,
V. E.
,
1999
, “
Pulmonary and Caval Flow Dynamics After Total Cavopulmonary Connection
,”
Heart
,
81
, pp.
67
72
.
24.
Kiris
,
C.
,
Kwak
,
D.
,
Rogers
,
S.
, and
Chang
,
I.-D.
,
1997
, “
Computational Approach for Probing the Flow Through Artificial Heart Devices
,”
ASME J. Biomech. Eng.
,
119
, pp.
452
460
.
25.
Bovendeerd
,
P. H. M.
,
van Steenhoven
,
A. A.
,
van de Vosse
,
F. N.
, and
Vossers
,
G.
,
1987
, “
Steady Entry Flow in a Curved Pipe
,”
J. Fluid Mech.
,
177
, pp.
233
246
.
You do not currently have access to this content.