Abstract

Articular cartilage has been shown to exhibit large transverse contractions when loaded in tension, suggesting the existence of large values for the Poisson’s ratio. Previous studies have suggested that this effect is dependent on amplitude of applied strain, so that a single Poisson’s ratio may not be sufficient to describe cartilage behavior. In this study, the Poisson’s ratio (ν), toe region modulus Eo, and linear region modulus E of human patellar articular cartilage were calculated in simple tension tests from optical analysis of the two-dimensional strain fields at equilibrium. The Poisson’s ratio was found to be independent of strain due to the absence of viscoelastic effects during testing. The Poisson’s ratio was found to be significantly higher in the surface zone (1.87±1.11, p<0.01) than in the middle zone (0.62±0.23), with no significant correlation of ν with age of the cartilage. In general, values for Poisson’s ratio were greater than 0.5, suggesting cartilage behavior in tension deviates from isotropy. Reported values for the Poisson’s ratio of cartilage in compression have been much lower than values measured here in tension, reflecting a mechanical contribution of the collagen fibers to anisotropy in tension but not compression. The toe-region modulus Eo was significantly higher in the surface zone (4.51±2.78 MPa, n=8) compared to the middle zone (2.51±1.93 MPa, n=10). In addition, the linear-region modulus E in the surface zone, but not middle zone (3.42±2.17 MPa, n=10), was found to correlate with age R=0.97,p<0.02 with values of surface zone E equal to 23.92±12.29 MPa n=5 for subjects under 70 yr of age, and 4.27±2.89 MPa n=3 for subjects over 70 yr. Moduli values and trends with depth were consistent with previous studies of human and animal cartilage. From direct measures of two independent material properties, ν and E, we calculated a shear modulus, G, which had not been previously reported for cartilage from tensile testing. Calculated values for surface zone G were 3.64±1.80 MPa for subjects under 70 yr old and 0.96±0.69 MPa for subjects over 70 yr old, and were significantly higher in the surface zone than in the middle zone (1.10±0.78 MPa). This study provides an intrinsic measure for the Poisson’s ratio of articular cartilage and its dependence on depth which will be important in understanding the nonlinear tension-compression and anisotropic behaviors of articular cartilage.

References

1.
Mow, V. C., and Setton, L. A., 1998, “Mechanical Properties of Normal and Osteoarthritic Articular Cartilage,” Osteoarthritis, eds., K. D. Brandt, M. Doherty, and L. S. Lohmander, Oxford University Press, Oxford, UK, pp. 108–122.
2.
Akizuki
,
S.
,
Mow
,
V. C.
,
Muller
,
F.
,
Pita
,
J. C.
, et al.
,
1986
, “
Tensile Properties of Human Knee Joint Cartilage: I. Influence of Ionic Conditions, Weight Bearing, and Fibrillation on the Tensile Modulus
,”
J. Orthop. Res.
,
4
, pp.
379
392
.
3.
Kempson
,
G. E.
,
1982
, “
Relationship Between the Tensile Properties of Articular Cartilage From the Human Knee and Age
,”
Ann. Rheum. Dis.
,
41
, pp.
508
511
.
4.
Kempson
,
G. E.
,
1991
, “
Age-Related changes in the Tensile Properties of Human Articular Cartilage: A Comparative Study Between the Femoral Head of the Hip Joint and the Talus of the Ankle Joint
,”
Biochim. Biophys. Acta
,
1075
, pp.
223
230
.
5.
Kempson
,
G. E.
,
Muir
,
H.
,
Pollard
,
C.
, and
Tuke
,
M.
,
1973
, “
Tensile Properties of the Cartilage of Human Femoral Condyles Related to the Content of collagen and Glycosaminoglycans
,”
Biochim. Biophys. Acta
,
297
, pp.
465
472
.
6.
Kempson, G. E., 1979, “Mechanical Properties of Articular Cartilage,” Adult Articular Cartilage, ed., M. A. R. Freeman, Grune and Stratton, NY, pp. 171–227.
7.
Kempson
,
G. E.
,
1975
, “
Mechanical Properties of Articular Cartilage and Their Relationship to Matrix Degradation
,”
Ann. Rheum. Dis.
,
34
, pp.
111
113
.
8.
Roth
,
V.
, and
Mow
,
V. C.
,
1980
, “
Intrinsic Tensile Behavior of the Matrix of Bovine Articular Cartilage and Its Variation With Age
,”
J. Bone Jt. Surg.
,
62A
(
7
), pp.
1102
1117
.
9.
Woo
,
S. L. Y.
,
Akeson
,
W. H.
, and
Jemmott
,
G. F.
,
1976
, “
Measurements of Nonhomogeneous Directional Mechanical Properties of Articular Cartilage in Tension
,”
J. Biomech.
,
9
, pp.
785
791
.
10.
Woo
,
S. L.
,
Lubock
,
P.
,
Gomez
,
M. A.
,
Jemmott
,
G. F.
, et al.
,
1979
, “
Large Deformation Nonhomogeneous and Directional Properties of Articular Cartilage in Uniaxial Tension
,”
J. Biomech.
,
12
(
6
), pp.
437
446
.
11.
Chang
,
D. G.
,
Lottman
,
L. M.
,
Chen
,
A. C.
,
Schinagl
,
R. M.
, et al.
,
1999
, “
The Depth-Dependent, Multi-Axial Properties of Aged Human Patellar Cartilage in Tension
,”
Trans. Orthop. Res. Soc.
,
23
, p.
644
644
.
12.
Elliott
,
D. M.
,
Kydd
,
S. R.
,
Perry
,
C. H.
, and
Setton
,
L. A.
,
1999
, “
Direct Measurement of the Poisson’s Ratio of Human Articular Cartilage in Tension
,”
Trans. Orthop. Res. Soc.
,
23
, p.
649
649
.
13.
Huang
,
C.-Y.
,
Stankiewicz
,
A.
,
Ateshian
,
G. A.
,
Flatow
,
E. L.
et al.
,
1999
, “
Anisotropy, Inhomogeneity, and Tension-Compression Nonlinearity of Human Glenohumeral Cartilage in Finite Deformation
,”
Trans. Orthop. Res. Soc.
,
23
, p.
95
95
.
14.
Jurvelin
,
J. S.
,
Buschmann
,
M. D.
, and
Hunziker
,
E. B.
,
1997
, “
Optical and Mechanical Determination of Poisson’s Ratio of Adult Bovine Humeral Articular Cartilage
,”
J. Biomech.
,
30
(
3
), pp.
235
241
.
15.
Wong
,
M.
,
Ponticiello
,
M.
,
Kovanen
,
V.
, and
Jurvelin
,
J.
,
2000
, “
Volumetric Changes of Articular Cartilage During Stress Relaxation in Unconfined Compression
,”
J. Biomech.
,
33
(
9
), pp.
1049
1054
.
16.
Mankin
,
H. J.
,
Dorfman
,
H.
,
Lippiello
,
L.
, and
Zarins
,
A.
,
1971
, “
Biochemical and Metabolic Abnormalities in Articular Cartilage From Osteo-Arthritic Human Hips
,”
J. Bone Jt. Surg.
,
53A
(
3
), pp.
523
537
.
17.
Carlson
,
C. S.
,
Loeser
,
R. F.
,
Purser
,
C. B.
,
Gardin
,
J. F.
, et al.
,
1996
, “
Osteoarthritis in Cynomolgus Macaques III: Effects of Age, Gende, and Subchondral Bone Thickness on the Severity of Disease
,”
J. Bone Mineral Res.
,
11
(
9
), pp.
1209
1217
.
18.
Meachim
,
G.
,
Denham
,
D.
,
Emery
,
I. H.
, and
Wilkinson
,
P. H.
,
1974
, “
Collagen Alignments and Artificial Splits at the Surface of Human Articular Cartilage
,”
J. Anatomy
,
118
, pp.
101
118
.
19.
Elliott
,
D. M.
,
Guilak
,
F.
,
Vail
,
T. P.
,
Wang
,
J. Y.
, et al.
,
1999
, “
Tensile Properties of Articular Cartilage are Altered by Meniscectomy in a Canine Model of Osteoarthritis
,”
J. Orthop. Res.
,
17
(
4
), pp.
503
508
.
20.
Elliott
,
D. M.
, and
Setton
,
L. A.
,
2001
, “
Anisotropic and Inhomogeneous Tensile Behavior of the Human Anulus Fibrosus: Experimental Measurement and Material Model Predictions
,”
ASME J. Biomech. Eng.
,
123
, pp.
256
263
.
21.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
, pp.
73
84
.
22.
Hayes
,
W. C.
, and
Mockros
,
L. F.
,
1971
, “
Viscoelastic Properties of Human Articular Cartilage
,”
J. Appl. Physiol.
,
31
, pp.
562
568
.
23.
Mow
,
V. C.
,
Gibbs
,
M. C.
,
Lai
,
W. M.
,
Zhu
,
W. B.
, et al.
,
1989
, “
Biphasic Indentation of Articular Cartilage—II. A Numerical Algorithm and an Experimental Study
,”
J. Biomech.
,
22
(
8/9
), pp.
853
861
.
24.
Athanasiou
,
K. A.
,
Rosenwasser
,
M. P.
,
Buckwalter
,
J. A.
,
Malinin
,
T. I.
, et al.
,
1991
, “
Interspecies Comparisons of In Situ Intrinsic Mechanical Properties of Distal Femoral Cartilage
,”
J. Orthop. Res.
,
9
(
3
), pp.
330
340
.
25.
Cohen
,
B.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1998
, “
A Transversely Isotropic Biphasic Model for Unconfined Compression of Growth Plate and Chondroepiphysis
,”
ASME J. Biomech. Eng.
,
120
, pp.
491
496
.
26.
Soulhat
,
J.
,
Buschmann
,
M. B.
, and
Shirazi-Adl
,
A.
,
1999
, “
A Fibril-Network-Reinforced Biphasic Model of Cartilage in Unconfined compression
,”
ASME J. Biomech. Eng.
,
121
, pp.
340
347
.
27.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
,
2000
, “
A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-Compression Nonlinearity in Articular Cartilage
,”
ASME J. Biomech. Eng.
,
122
, pp.
576
586
.
28.
Korhonen
,
R. K.
,
Toyras
,
J.
,
Nieminen
,
M. T.
,
Rieppo
,
J.
, et al.
,
2001
, “
Effect of Ionic Environment on the Compression-Tension Nonlinearity of Articular Cartilage in the Direction Perpendicular to Articular Surface
,”
Trans. Orthop. Soc.
,
26
, p.
439
439
.
29.
Spirit
,
A. A.
,
Mak
,
A. F.
, and
Wassell
,
R. P.
,
1989
, “
Nonlinear Viscoelastic Properties of Articular Cartilage in Shear
,”
J. Orthop. Res.
,
7
(
1
), pp.
43
49
.
30.
Setton
,
L. A.
,
Mow
,
V. C.
, and
Howell
,
D. S.
,
1995
, “
Mechanical Behavior of Articular Cartilage in Shear is Altered by Transection of the Anterior Cruciate Ligament
,”
J. Orthop. Res.
,
13
, pp.
473
482
.
31.
Zhu
,
W.
,
Mow
,
V. C.
,
Koob
,
T. J.
, and
Eyre
,
D. R.
,
1993
, “
Viscoelastic Shear Properties of Articular Cartilage and the Effects of Glycosidase Treatments
,”
J. Orthop. Res.
,
11
, pp.
771
781
.
32.
LeRoux
,
M. A.
,
Arokoski
,
J.
,
Vail
,
T. P.
,
Guilak
,
F.
, et al.
,
2000
, “
Simultaneous Changes in the Mechanical Properties, Quantitative Collagen Organization, and Proteoglycan Concentration of Articular Cartilage Following Canine Meniscectomy
,”
J. Orthop. Res.
,
18
, pp.
383
392
.
33.
Donzelli
,
P. S.
,
Spiker
,
R. L.
,
Ateshian
,
G. A.
, and
Mow
,
V. C.
,
1999
, “
Contact Analysis of Biphasic Transversely Isotropic Cartilage Layers and Correlations With Tissue Failure
,”
J. Biomech.
,
32
(
10
), pp.
1037
1047
.
34.
Bursac
,
P. M.
,
Obitz
,
T. W.
,
Eisenberg
,
S. R.
, and
Stamenovic
,
D.
,
1999
, “
Confined and Unconfined Stress Relaxation of Cartilage: Appropriateness of a Transversely Isotropic Analysis
,”
J. Biomech.
,
32
, pp.
1125
1130
.
You do not currently have access to this content.