It has been well established that articular cartilage is compositionally and mechanically inhomogeneous through its depth. To what extent this structural inhomogeneity is a prerequisite for appropriate cartilage function and integrity is not well understood. The first hypothesis to be tested in this study was that the depth-dependent inhomogeneity of the cartilage acts to maximize the interstitial fluid load support at the articular surface, to provide efficient frictional and wear properties. The second hypothesis was that the inhomogeneity produces a more homogeneous state of elastic stress in the matrix than would be achieved with uniform properties. We have, for the first time, simultaneously determined depth-dependent tensile and compressive properties of human patellofemoral cartilage from unconfined compression stress relaxation tests. The results show that the tensile modulus increases significantly from 4.1±1.9MPa in the deep zone to 8.3±3.7MPa at the superficial zone, while the compressive modulus decreases from 0.73±0.26MPa to 0.28±0.16MPa. The experimental measurements were then implemented with the finite-element method to compute the response of an inhomogeneous and homogeneous cartilage layer to loading. The finite-element models demonstrate that structural inhomogeneity acts to increase the interstitial fluid load support at the articular surface. However, the state of stress, strain, or strain energy density in the solid matrix remained inhomogeneous through the depth of the articular layer, whether or not inhomogeneous material properties were employed. We suggest that increased fluid load support at the articular surface enhances the frictional and wear properties of articular cartilage, but that the tissue is not functionally adapted to produce homogeneous stress, strain, or strain energy density distributions. Interstitial fluid pressurization, but not a homogeneous elastic stress distribution, appears thus to be a prerequisite for the functional and morphological integrity of the cartilage.

1.
Meachim, G., and Stockwell, R. A., 1979, “The Matrix,” In: Adult Articular Cartilage, M. A. R. Freeman (ed.), 2nd edition, Pitman Medical, Kent, England, pp. 1–67.
2.
Mow, V. C., and Ratcliffe, A., 1997, “Structure and Function of Articular Cartilage and Meniscus,” In: Basic Orthopaedic Biomechanics, V. C. Mow and W. C. Hayes (eds.), 2nd edition, Lippincott-Raven, Philadelphia, PA, pp. 113–177.
3.
Maroudas, A., 1979, “Physicochemical Properties of Articular Cartilage,” In: Adult Articular Cartilage, M. A. R. Freeman (ed.), 2nd edition, Pitman Medical, Kent, England, pp. 215–290.
4.
Kempson, G. E., 1979, “Mechanical Properties of Articular Cartilage,” In: Adult Articular Cartilage, M. A. R. Freeman (ed.), 2nd edition, Pitman Medical, Kent, England, pp. 333–414.
5.
Akizuki
,
S.
,
Mow
,
V. C.
,
Muller
,
F.
,
Pita
,
J. C.
,
Howell
,
D. S.
, and
Manicourt
,
D. H.
,
1986
, “
Tensile Properties of Human Knee Joint Cartilage: I. Influence of Ionic Conditions, Weight Bearing, and Fibrillation on the Tensile Modulus
,”
J. Orthop. Res.
,
4
, pp.
379
392
.
6.
Guilak
,
F.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
,
1995
, “
Chondrocyte Deformation and Local Tissue Strain in Articular Cartilage: A Confocal Microscopy Study
,”
J. Orthop. Res.
,
13
, pp.
410
421
.
7.
Schinagl
,
R. M.
,
Gurskis
,
D.
,
Chen
,
A. C.
, and
Sah
,
R. L.
,
1997
, “
Depth-Dependent Confined Compression Modulus of Full-Thickness Bovine Articular Cartilage
,”
J. Orthop. Res.
,
15
, pp.
499
506
.
8.
Chen
,
A. C.
,
Bae
,
W. C.
,
Schinagl
,
R. M.
,
Sah
,
R. L.
, and
2001
, “
Depth- and Strain-Dependent Mechanical and Electromechanical Properties of Full-Thickness Bovine Articular Cartilage in Confined Compression
,”
J. Biomech.
,
34
, pp.
1
12
.
9.
Wang
,
C. C-B.
,
Chahine
,
N. O.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2003
, “
Optical Determination of Anisotropic Properties of Bovine Articular Cartilage in Compression
,”
J. Biomech.
,
36
, pp.
339
353
.
10.
Brandt, K. D., 1990, Cartilage Changes in Osteoarthritis, Indiana University School of Medicine Press, Indianapolis, IN.
11.
Humphrey
,
J. D.
, and
Na
,
S.
,
2002
, “
Elastodynamics and Arterial Wall Stress
,”
Ann. Biomed. Eng.
,
30
, pp.
509
523
.
12.
McCutchen
,
C. W.
,
1962
, “
The Frictional Properties of Animal Joints
,”
Wear
,
5
, pp.
1
17
.
13.
Malcom, L. L., 1976, “An Experimental Investigation of the Frictional and Deformational Responses of Articular Cartilage Interfaces to Static and Dynamic Loading,” Ph.D. Thesis, University of California, San Diego.
14.
Forster
,
H.
, and
Fisher
,
J.
,
1996
, “
The Influence of Loading Time and Lubricant on the Friction of Articular Cartilage
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
210
(Part H), pp.
109
119
.
15.
Ateshian
,
G. A.
,
1997
, “
A Theoretical Formulation for Boundary Friction in Articular Cartilage
,”
ASME J. Biomech. Eng.
,
119
, pp.
81
86
.
16.
Ateshian
,
G. A.
,
Wang
,
H.
, and
Lai
,
W. M.
,
1998
, “
The Role of Interstitial Fluid Pressurization and Surface Porosities on the Boundary Friction of Articular Cartilage
,”
ASME J. Tribol.
,
120
, pp.
241
251
.
17.
Ateshian
,
G. A.
,
Lai
,
W. M.
,
Zhu
,
W. B.
, and
Mow
,
V. C.
,
1994
, “
An Asymptotic Solution for Two Contacting Biphasic Cartilage Layer
,”
J. Biomech.
,
27
, pp.
1347
1360
.
18.
Macirowski
,
T.
,
Tepic
,
S.
, and
Mann
,
R. W.
,
1994
, “
Cartilage Stresses in the Human Hip Joint
,”
J. Biomech. Eng.
,
116
, pp.
11
18
.
19.
Ateshian
,
G. A.
, and
Wang
,
H.
,
1995
, “
A Theoretical Solution for the Rolling Contact of Frictionless Cylindrical Biphasic Articular Cartilage Layers
,”
J. Biomech.
,
28
, pp.
1341
1355
.
20.
Kelkar
,
R.
, and
Ateshian
,
G. A.
,
1999
, “
Contact Creep of Biphasic Cartilage Layers: Identical Layers
,”
ASME J. Appl. Mech.
,
66
, pp.
137
145
.
21.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
J. Biomech. Eng.
,
102
, pp.
73
84
.
22.
Mizrahi
,
J.
,
Maroudas
,
A.
,
Lanir
,
Y.
,
Ziv
,
I.
, and
Webber
,
T. J.
,
1986
, “
The ‘Instantaneous’ Deformation of Cartilage: Effects of Collagen Fiber Orientation and Osmotic Stress
,”
Biorheology
,
23
, pp.
311
330
.
23.
Cohen
,
B.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1998
, “
A Transversely Isotropic Biphasic Model for Unconfined Compression of Growth Plate and Chondroepiphysis
,”
J. Biomech. Eng.
,
120
, pp.
491
496
.
24.
Soulhat
,
J.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
,
1999
, “
A Fibril-Network-Reinforced Biphasic Model of Cartilage in Unconfined Compression
,”
J. Biomech. Eng.
,
121
, pp.
340
347
.
25.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
,
2000
, “
A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-Compression Nonlinearity in Articular Cartilage
,”
J. Biomech. Eng.
,
122
, pp.
576
586
.
26.
Huang
,
C. Y.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
,
2001
, “
The Role of Flow-Independent Viscoelasticity in the Biphasic Tensile and Compressive Responses of Articular Cartilage
,”
J. Biomech. Eng.
,
123
, pp.
410
417
.
27.
Li
,
L. P.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
,
2000
, “
A Fibril Reinforced Nonhomogeneous Poroelastic Model for Articular Cartilage: Inhomogeneous Response in Unconfined Compression
,”
J. Biomech.
,
33
, pp.
1533
1541
.
28.
Heegaard
,
J.
,
Leyvraz
,
P. F.
,
Curnier
,
A.
,
Rakotomanana
,
L.
, and
Huiskes
,
R.
,
1995
, “
The Biomechanics of the Human Patella During Passive Knee Flexion
,”
J. Biomech.
,
28
, pp.
1265
1279
.
29.
Bendjaballah
,
M. Z.
,
Shirazi-Adl
,
A.
, and
Zukor
,
D. J.
,
1997
, “
Finite Element Analysis of Human Knee Joint in Varus-Valgus
,”
Clin. Biomech. (Los Angel. Calif.)
,
12
, pp.
139
148
.
30.
Dunbar
, Jr.,
W. L.
,
Un
,
K.
,
Donzelli
,
P. S.
, and
Spilker
,
R. L.
,
2001
, “
An Evaluation of Three-Dimensional Diarthrodial Joint Contact Using Penetration Data and the Finite Element Method
,”
J. Biomech. Eng.
,
123
, pp.
333
340
.
31.
Li
,
G.
,
Lopez
,
O.
, and
Rubash
,
H.
,
2001
, “
Variability of a Three-Dimensional Finite Element Model Constructed Using Magnetic Resonance Images of a Knee for Joint Contact Stress Analysis
,”
J. Biomech. Eng.
,
123
, pp.
341
346
.
32.
Donahue
,
T. L.
,
Hull
,
M. L.
,
Rashid
,
M. M.
, and
Jacobs
,
C. R.
,
2002
, “
A Finite Element Model of the Human Knee Joint for the Study of Tibio-Femoral Contact
,”
J. Biomech. Eng.
,
124
, pp.
273
280
.
33.
Wayne
,
J. S.
,
Woo
,
S. L.
, and
Kwan
,
M. K.
,
1991
, “
Application of the U-P Finite Element Method to the Study of Articular Cartilage
,”
J. Biomech. Eng.
,
113
, pp.
397
403
.
34.
Almeida
,
E. S.
, and
Spilker
,
R. L.
,
1997
, “
Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation: Part I - Alternate Formulations
,”
Comput. Methods Biomech. Biomed. Engin.
,
1
, pp.
25
46
.
35.
Bathe, K-J., 1996, Finite Element Procedures, Prentice-Hall, Englewood Cliffs, N.J.
36.
Herberhold
,
C.
,
Faber
,
S.
,
Stammberger
,
T.
,
Steinlechner
,
M.
,
Putz
,
R.
,
Englmeier
,
K. H.
,
Reiser
,
M.
, and
Eckstein
,
F.
,
1999
, “
In Situ Measurements of Articular Cartilage Deformation in Intact Femoropatellar Joint Under Static Loading
,”
J. Biomech.
,
32
, pp.
1287
1295
.
37.
Oloyede
,
A.
, and
Broom
,
N. D.
,
1991
, “
Is Classical Consolidation Theory Applicable to Articular Cartilage Deformation?
Clin. Biomech. (Los Angel. Calif.)
,
6
, pp.
206
212
.
38.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
,
1998
, “
Experimental Verification and Theoretical Prediction of Cartilage Interstitial Fluid Pressurization at an Impermeable Contact Interface in Confined Compression
,”
J. Biomech.
,
31
, pp.
927
934
.
39.
Armstrong
,
C. G.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1984
, “
An Analysis of the Unconfined Compression of Articular Cartilage
,”
J. Biomech. Eng.
,
106
, pp.
165
173
.
40.
Park
,
S.
,
Krishnan
,
R.
,
Nicoll
,
S. B.
, and
Ateshian
,
G. A.
, “
Cartilage Interstitial Fluid Load Support in Unconfined Compression
,” J. Biomech., (in review).
41.
Krishnan, R., Kopacz, M., and Ateshian, G. A., 2003, “Verification of the Role of Interstitial Fluid Load Support in the Frictional Response of Bovine Articular Cartilage,” 49th Annual Meeting of the Orthopaedic Research Society, 28, paper no. 0287.
42.
Kim
,
Y. J.
,
Bonassar
,
L. J.
, and
Grodzinsky
,
A. J.
,
1995
, “
The Role of Cartilage Streaming Potential, Fluid Flow and Pressure in the Stimulation of Chondrocyte Biosynthesis During Dynamic Compression
,”
J. Biomech.
,
28
, pp.
1055
1066
.
43.
Buschmann
,
M. D.
,
Kim
,
Y. J.
,
Wong
,
M.
,
Frank
,
E.
,
Hunziker
,
E. B.
, and
Grodzinsky
,
A. J.
,
1999
, “
Stimulation of Aggrecan Synthesis in Cartilage Explants By Cyclic Loading Is Localized to Regions of High Interstitial Fluid Flow
,”
Arch. Biochem. Biophys.
,
366
, pp.
1
7
.
44.
Woo
,
S. L.
,
Lubock
,
P.
,
Gomez
,
M. A.
,
Jemmott
,
G. F.
,
Kuei
,
S. C.
, and
Akeson
,
W. H.
,
1979
, “
Large Deformation Nonhomogeneous and Directional Properties of Articular Cartilage in Uniaxial Tension
,”
J. Biomech.
,
12
, pp.
437
446
.
45.
Li
,
L. P.
,
Soulhat
,
J.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
,
1999
, “
Nonlinear Analysis of Cartilage in Unconfined Ramp Compression Using a Fibril Reinforced Poroelastic Model
,”
Clin. Biomech. (Los Angel. Calif.)
,
14
, pp.
673
682
.
46.
Kwan
,
M. K.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1990
, “
A Finite Deformation Theory for Cartilage and Other Soft Hydrated Connective Tissues--I. Equilibrium Results
,”
J. Biomech.
,
23
, pp.
145
155
.
47.
Ateshian
,
G. A.
,
Warden
,
W. H.
,
Kim
,
J. J.
,
Grelsamer
,
R. P.
, and
Mow
,
V. C.
,
1997
, “
Finite Deformation Biphasic Material Properties of Bovine Articular Cartilage From Confined Compression Experiments
,”
J. Biomech.
,
30
, pp.
1157
1164
.
48.
Mak
,
A. F.
,
1986
, “
The Apparent Viscoelastic Behavior of Articular Cartilage—The Contributions From the Intrinsic Matrix Viscoelasticity and Interstitial Fluid Flows
,”
J. Biomech. Eng.
,
108
, pp.
123
130
.
49.
Setton
,
L. A.
,
Zhu
,
W.
, and
Mow
,
V. C.
,
1993
, “
The Biphasic Poroviscoelastic Behavior of Articular Cartilage: Role of the Surface Zone in Governing the Compressive Behavior
,”
J. Biomech.
,
26
,
581
592
.
50.
Zhu
,
W.
,
Mow
,
V. C.
,
Koob
,
T. J.
, and
Eyre
,
D. R.
,
1993
, “
Viscoelastic Shear Properties of Articular Cartilage and the Effects of Glycosidase Treatments
,”
J. Orthop. Res.
,
11
, pp.
771
781
.
51.
DiSilvestro
,
M. R.
, and
Suh
,
J. K.
,
2001
, “
A Cross-Validation of the Biphasic Poroviscoelastic Model of Articular Cartilage in Unconfined Compression, Indentation, and Confined Compression
,”
J. Biomech.
,
34
, pp.
519
525
.
52.
Huang
,
C-Y.
,
Soltz
,
M. A.
,
Kopacz
,
M.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
,
2003
, “
Experimental Verification of the Role of Intrinsic Matrix Viscoelasticity and Tension-Compression Nonlinearity in the Biphasic Response of Cartilage in Unconfined Compression
,”
J. Biomech. Eng.
,
125
, pp.
84
93
.
53.
Cohen
,
Z. A.
,
Roglic
,
H.
,
Grelsamer
,
R. P.
,
Henry
,
J. H.
,
Levine
,
W. N.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
,
2001
, “
Patellofemoral Stresses During Open and Closed Kinetic Chain Exercises: An Analysis Using Computer Simulation
,”
Am. J. Sports Med.
,
29
, pp.
480
487
.
54.
Mu¨hlbauer
,
R.
,
Lukasz
,
S.
,
Faber
,
S.
,
Stammberger
,
T.
, and
Eckstein
,
F.
,
2000
, “
Comparison of Knee Joint Cartilage Thickness in Triathletes and Physically Inactive Volunteers—3-D Analysis with Magnetic Imaging
,”
Am. J. Sports Med.
,
28
, pp.
541
546
.
55.
Eckstein
,
F.
,
Faber
,
S.
,
Muhlbauer
,
R.
,
Hohe
,
J.
,
Englmeier
,
K. H.
,
Reiser
,
M.
, and
Putz
,
R.
,
2002
, “
Functional Adaptation of Human Joints to Mechanical Stimuli
,”
Osteoarthritis Cartilage
,
10
, pp.
44
50
.
56.
Wu
,
J. Z.
,
Herzog
,
W.
, and
Epstein
,
M.
,
1997
, “
An Improved Solution for the Contact of Two Biphasic Cartilage Layers
,”
J. Biomech.
,
30
, pp.
371
375
.
57.
Wu
,
J. Z.
,
Herzog
,
W.
, and
Epstein
,
M.
,
2000
, “
Joint Contact Mechanics in the Early Stages of Osteoarthritis
,”
Med. Eng. Phys.
,
22
, pp.
1
12
.
58.
Donzelli
,
P. S.
,
Spilker
,
R. L.
,
Ateshian
,
G. A.
,
Mow
,
V. C.
,
1999
, “
Contact Analysis of Biphasic Transversely Isotropic Cartilage Layers and Correlations With Tissue Failure
,”
J. Biomech.
,
32
, pp.
1037
1047
.
59.
Garcia
,
J. J.
,
Altiero
,
N. J.
,
Haut
,
R. C.
,
1998
, “
An Approach for the Stress Analysis of Transversely Isotropic Biphasic Cartilage Under Impact Load
,”
J. Biomech. Eng.
,
120
, pp.
608
613
.
60.
Thompson
, Jr.,
R. C.
,
Oegema
, Jr.,
T. R.
,
Lewis
,
J. L.
, and
Wallace
,
L.
,
1991
, “
Osteoarthrotic Changes After Acute Transarticular Load. An Animal Model
,”
J. Bone Jt. Surg.
,
73A
, pp.
990
1001
.
61.
Atkinson
,
P. J.
, and
Haut
,
R. C.
,
2001
, “
Injuries Produced by Blunt Trauma to the Human Patellofemoral Joint Vary With Flexion Angle of the Knee
,”
J. Orthop. Res.
,
19
, pp.
827
833
.
62.
Atkinson
,
T. S.
,
Haut
,
R. C.
, and
Altiero
,
N. J.
,
1998
, “
An Investigation of Biphasic Failure Criteria for Impact-Induced Fissuring of Articular Cartilage
,”
J. Biomech. Eng.
,
120
, pp.
536
537
.
You do not currently have access to this content.