The objective of this study was to assess mechano-biological response of articular cartilage when subjected to a single impact stress. Mature bovine cartilage explants were impacted with peak stresses ranging from 10 to 60 MPa at a stress rate of 350 MPa/s. Water loss, matrix axial deformation, dynamic impact modulus (DIM), and cell viability were measured immediately after impaction. The water loss through the articular surface (AS) was small and ranged from 1% to 6% with increasing peak stress. The corresponding axial strains ranged from 2.5% to 25%, respectively, while the DIM was 455.9±111.9 MPa. Chondrocyte death started at the articular surface and increased in depth to a maximum of 6% (70 μm) of the cartilage thickness at the highest stress. We found that the volumetric (axial) strain was more than twice the amount of water loss at the highest peak stress. Furthermore, specimens impacted such that the interstitial water was forced through the deep zone (DZ) had less water loss, a higher DIM, and no cell death. These findings appear to be due to matrix compaction in the superficial region causing higher compressive strains to occur at the surface rather than in the deeper zones.

1.
Freeman, M. A. R., 1979, “The Matrix,” Adult Articular Catilage, Pitman Medical, Kent, UK, pp. 1–96.
2.
Ateshian
,
G. A.
,
Lai
,
W. M.
,
Zhu
,
W. B.
, and
Mow
,
V. C.
,
1994
, “
An Asymptotic Solution for the Contact of Two Biphasic Cartilage Layers
,”
J. Biomech.
,
27
(
11
), pp.
1347
1360
.
3.
Ateshian
,
G. A.
, and
Wang
,
H.
,
1995
, “
A Theoretical Solution for the Frictionless Rolling Contact of Cylindrical Biphasic Articular Cartilage Layers [See Comments]
,”
J. Biomech.
,
28
(
11
), pp.
1341
1355
.
4.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
,
1998
, “
Experimental Verification and Theoretical Prediction of Cartilage Interstitial Fluid Pressurization at an Impermeable Contact Interface in Confined Compression
,”
J. Biomech.
,
31
(
10
), pp.
927
934
.
5.
Armstrong
,
C. G.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1984
, “
An Analysis of the Unconfined Compression of Articular Cartilage
,”
J. Biomech. Eng.
,
106
(
2
), pp.
165
173
.
6.
Suh
,
J. K.
, and
Spilker
,
R. L.
,
1994
, “
Indentation Analysis of Biphasic Articular Cartilage: Nonlinear Phenomena Under Finite Deformation
,”
J. Biomech. Eng.
,
116
(
1
), pp.
1
9
.
7.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression? Theory and Experiments
,”
J. Biomech. Eng.
,
102
(
1
), pp.
73
84
.
8.
Suh
,
J. K.
, and
Bai
,
S.
,
1998
, “
Finite Element Formulation of Biphasic Poroviscoelastic Model for Articular Cartilage
,”
J. Biomech. Eng.
,
120
(
2
), pp.
195
201
.
9.
Repo
,
R. U.
, and
Finlay
,
J. B.
,
1977
, “
Survival of Articular Cartilage After Controlled Impact
,”
J. Bone Jt. Surg.
,
59
(
8
), pp.
1068
1076
.
10.
Jeffrey
,
J. E.
,
Gregory
,
D. W.
, and
Aspden
,
R. M.
,
1995
, “
Matrix Damage and Chondrocyte Viability Following a Single Impact Load on Articular Cartilage
,”
Arch. Biochem. Biophys.
,
322
(
1
), pp.
87
96
.
11.
Torzilli
,
P. A.
,
Grigiene
,
R.
,
Borrelli
, Jr.,
J.
, and
Helfet
,
D. L.
,
1999
, “
Effect of Impact Load on Articular Cartilage: Cell Metabolism and Viability, and Matrix Water Content
,”
J. Biomech. Eng.
,
121
(
5
), pp.
433
441
.
12.
Ewers
,
B. J.
,
Dvoracek-Driksna
,
D.
,
Orth
,
M. W.
, and
Haut
,
R. C.
,
2001
, “
The Extent of Matrix Damage and Chondrocyte Death in Mechanically Traumatized Articular Cartilage Explants Depends on Rate of Loading
,”
J. Orthop. Res.
,
19
(
5
), pp.
779
784
.
13.
Torzilli, P. A., Askari, E., and Jenkins, J., 1990, “Water Content and Solute Diffusion Properties of Articular Cartilage,” Biomechanics of Diarthroidial Joints, Springer-Verlag, New York, pp. 363–390.
14.
Schinagl
,
R. M.
,
Gurskis
,
D.
,
Chen
,
A. C.
, and
Sah
,
R. L.
,
1997
, “
Depth-Dependent Confined Compression Modulus of Full-Thickness Bovine Articular Cartilage
,”
J. Orthop. Res.
,
15
(
4
), pp.
499
506
.
15.
Chen
,
A. C.
,
Bae
,
W. C.
,
Schinagl
,
R. M.
, and
Sah
,
R. L.
,
2001
, “
Depth- and Strain-Dependent Mechanical and Electromechanical Properties of Full-Thickness Bovine Articular Cartilage in Confined Compression
,”
J. Biomech.
,
34
(
1
), pp.
1
12
.
16.
Chen
,
S. S.
,
Falcovitz
,
Y. H.
,
Schneiderman
,
R.
,
Maroudas
,
A.
, and
Sah
,
R. L.
,
2001
, “
Depth-Dependent Compressive Properties of Normal Aged Human Femoral Head Articular Cartilage: Relationship to Fixed Charge Density
,”
Osteoarthritis Cartilage
,
9
(
6
), pp.
561
569
.
17.
O’Connor
,
P.
,
Orford
,
C. R.
, and
Gardner
,
D. L.
,
1988
, “
Differential Response to Compressive Loads of Zones of Canine Hyaline Articular Cartilage: Micromechanical, Light and Electron Microscopic Studies
,”
Ann. Rheum. Dis.
,
47
(
5
), pp.
414
420
.
18.
Rieppo, J., Laasanen, M. S., Korhonen, R. K., and Toyras, J., 2001, “
Depth-Dependent Mechanical Properties of Bovine Patellar Cartilage,” Proceedings 47th Annual Meeting of the Orthopaedic Research Society, San Francisco, CA, p. 440.
19.
Maroudas
,
A.
,
Muir
,
H.
, and
Wingham
,
J.
,
1969
, “
The Correlation of Fixed Negative Charge With Glycosaminoglycan Content of Human Articular Cartilage
,”
Biochem. Biophys Acta
,
177
(
3
), pp.
492
500
.
20.
Brocklehurst
,
R.
,
Bayliss
,
M. T.
,
Maroudas
,
A.
,
Coysh
,
H. L.
,
Freeman
,
M. A.
,
Revell
,
P. A.
, and
Ali
,
S. Y.
,
1984
, “
The Composition of Normal and Osteoarthritic Articular Cartilage From Human Knee Joints. With Special Reference to Unicompartmental Replacement and Osteotomy of the Knee
,”
J. Bone Jt. Surg., Am. Vol.
,
66
(
1
), pp.
95
106
.
21.
Lai
,
W. M.
,
Mow
,
V. C.
, and
Roth
,
V.
,
1981
, “
Effects of Nonlinear Strain-Dependent Permeability and Rate of Compression on the Stress Behavior of Articular Cartilage
,”
J. Biomech. Eng.
,
103
(
2
), pp.
61
66
.
22.
Buschmann
,
M. D.
,
Soulhat
,
J.
,
Shirazi-Adl
,
A.
,
Jurvelin
,
J. S.
, and
Hunziker
,
E. B.
,
1998
, “
Confined Compression of Articular Cartilage: Linearity in Ramp and Sinusoidal Tests and the Importance of Interdigitation and Incomplete Confinement
,”
J. Biomech.
,
31
(
2
), pp.
171
178
.
23.
Guilak
,
F.
,
Jones
,
W. R.
,
Ting-Beall
,
H. P.
, and
Lee
,
G. M.
,
1999
, “
The Deformation Behavior and Mechanical Properties of Chondrocytes in Articular Cartilage
,”
Osteoarthritis Cartilage
,
7
(
1
), pp.
59
70
.
24.
Bush
,
P. G.
, and
Hall
,
A. C.
,
2001
, “
The Osmotic Sensitivity of Isolated and In Situ Bovine Articular Chondrocytes
,”
J. Orthop. Res.
,
19
(
5
), pp.
768
778
.
25.
Kobayashi
,
S.
,
Yonekubo
,
S.
, and
Kurogouchi
,
Y.
,
1996
, “
Cryoscanning Electron Microscopy of Loaded Articular Cartilage With Special Reference to the Surface Amorphous Layer
,”
J. Anat.
,
188
(Pt 2), pp.
311
322
.
26.
Basser
,
P. J.
,
Schneiderman
,
R.
,
Bank
,
R. A.
,
Wachtel
,
E.
, and
Maroudas
,
A.
,
1998
, “
Mechanical Properties of the Collagen Network in Human Articular Cartilage as Measured by Osmotic Stress Technique
,”
Arch. Biochem. Biophys.
,
351
(
2
), pp.
207
219
.
27.
Wang
,
C. C.
,
Hung
,
C. T.
, and
Mow
,
V. C.
,
2001
, “
An Analysis of the Effects of Depth-Dependent Aggregate Modulus on Articular Cartilage Stress-Relaxation Behavior in Compression
,”
J. Biomech.
,
34
(
1
), pp.
75
84
.
28.
Silyn-Roberts
,
H.
, and
Broom
,
N. D.
,
1990
, “
Fracture Behavior of Cartilage-on-Bone in Response to Repeated Impact Loading
,”
Connect. Tissue Res.
,
24
(
2
), pp.
143
156
.
29.
Afoke
,
N. Y.
,
Byers
,
P. D.
, and
Hutton
,
W. C.
,
1987
, “
Contact Pressures in the Human Hip Joint
,”
J. Bone Jt. Surg., Br. Vol.
,
69
(
4
), pp.
536
541
.
30.
Hodge
,
W. A.
,
Carlson
,
K. L.
,
Fijan
,
R. S.
,
Burgess
,
R. G.
,
Riley
,
P. O.
,
Harris
,
W. H.
, and
Mann
,
R. W.
,
1989
, “
Contact Pressures From an Instrumented Hip Endoprosthesis
,”
J. Bone Jt. Surg., Am. Vol.
,
71
(
9
), pp.
1378
1386
.
31.
Urban
,
J. P.
,
1994
, “
The Chondrocyte: A Cell Under Pressure
,”
Br. J. Rheumatol.
,
33
(
10
), pp.
901
908
.
32.
Takahashi
,
K.
,
Kubo
,
T.
,
Arai
,
Y.
,
Kitajima
,
I.
,
Takigawa
,
M.
,
Imanishi
,
J.
, and
Hirasawa
,
Y.
,
1998
, “
Hydrostatic Pressure Induces Expression of Interleukin 6 and Tumour Necrosis Factor Alpha Mrnas in a Chondrocyte-Like Cell Line
,”
Ann. Rheum. Dis.
,
57
(
4
), pp.
231
236
.
33.
Hall
,
A. C.
,
1999
, “
Differential Effects of Hydrostatic Pressure on Cation Transport Pathways of Isolated Articular Chondrocytes
,”
J. Cell Physiol.
,
178
(
2
), pp.
197
204
.
34.
Radin
,
E. L.
,
Paul
,
I. L.
, and
Lowy
,
M.
,
1970
, “
A Comparison of the Dynamic Force Transmitting Properties of Subchondral Bone and Articular Cartilage
,”
J. Bone Jt. Surg., Am. Vol.
,
52
(
3
), pp.
444
456
.
35.
Oloyede
,
A.
,
Flachsmann
,
R.
, and
Broom
,
N. D.
,
1992
, “
The Dramatic Influence of Loading Velocity on the Compressive Response of Articular Cartilage
,”
Connect. Tissue Res.
,
27pp.
(
4
)
211
224
.
You do not currently have access to this content.