A primary mechanism of solute transport in articular cartilage is believed to occur through passive diffusion across the articular surface, but cyclical loading has been shown experimentally to enhance the transport of large solutes. The objective of this study is to examine the effect of dynamic loading within a theoretical context, and to investigate the circumstances under which convective transport induced by dynamic loading might supplement diffusive transport. The theory of incompressible mixtures was used to model the tissue (gel) as a mixture of a gel solid matrix (extracellular matrix/scaffold), and two fluid phases (interstitial fluid solvent and neutral solute), to solve the problem of solute transport through the lateral surface of a cylindrical sample loaded dynamically in unconfined compression with frictionless impermeable platens in a bathing solution containing an excess of solute. The resulting equations are governed by nondimensional parameters, the most significant of which are the ratio of the diffusive velocity of the interstitial fluid in the gel to the solute diffusivity in the gel Rg, the ratio of actual to ideal solute diffusive velocities inside the gel Rd, the ratio of loading frequency to the characteristic frequency of the gel f^, and the compressive strain amplitude ε0. Results show that when Rg>1,Rd<1, and f^>1, dynamic loading can significantly enhance solute transport into the gel, and that this effect is enhanced as ε0 increases. Based on representative material properties of cartilage and agarose gels, and diffusivities of various solutes in these gels, it is found that the ranges Rg>1,Rd<1 correspond to large solutes, whereas f^>1 is in the range of physiological loading frequencies. These theoretical predictions are thus in agreement with the limited experimental data available in the literature. The results of this study apply to any porous hydrated tissue or material, and it is therefore plausible to hypothesize that dynamic loading may serve to enhance solute transport in a variety of physiological processes.

1.
McKibbin, B., and Maroudas, A., 1974, “Nutrition and Metabolism,” Adult articular cartilage, M. A. R. Freeman, ed., Grune & Stratton, New York, pp. 461–486.
2.
Maroudas
,
A.
,
1968
, “
Physicochemical Properties of Cartilage in the Light of Ion Exchange Theory
,”
Biophys. J.
,
8
(
5
), pp.
575
595
.
3.
Maroudas
,
A.
,
1975
, “
Biophysical Chemistry of Cartilaginous Tissues With Special Reference to Solute and Fluid Transport
,”
Biorheology
,
12
(
3–4
), pp.
233
248
.
4.
Torzilli
,
P. A.
,
Arduino
,
J. M.
,
Gregory
,
J. D.
, and
Bansal
,
M.
,
1997
, “
Effect of Proteoglycan Removal on Solute Mobility in Articular Cartilage
,”
J. Biomech.
,
30
(
9
), pp.
895
902
.
5.
Torzilli
,
P. A.
,
Adams
,
T. C.
, and
Mis
,
R. J.
,
1987
, “
Transient Solute Diffusion in Articular Cartilage
,”
J. Biomech.
,
20
(
2
), pp.
203
214
.
6.
Torzilli
,
P. A.
,
1993
, “
Effects of Temperature, Concentration and Articular Surface Removal on Transient Solute Diffusion in Articular Cartilage
,”
Med. Biol. Eng. Comput.
,
31
(
Suppl
), pp.
93
98
.
7.
Burstein
,
D.
,
Gray
,
M. L.
,
Hartman
,
A. L.
,
Gipe
,
R.
, and
Foy
,
B. D.
,
1993
, “
Diffusion of Small Solutes in Cartilage as Measured by Nuclear Magnetic Resonance (NMR) Spectroscopy and Imaging
,”
J. Orthop. Res.
,
11
(
4
), pp.
465
478
.
8.
Schneiderman
,
R.
,
Snir
,
E.
,
Popper
,
O.
,
Hiss
,
J.
,
Stein
,
H.
, and
Maroudas
,
A.
,
1995
, “
Insulin-Like Growth Factor-I and Its Complexes in Normal Human Articular Cartilage: Studies of Partition and Diffusion
,”
Arch. Biochem. Biophys.
,
324
(
1
), pp.
159
172
.
9.
Potter
,
K.
,
Spencer
,
R. G.
, and
McFarland
,
E. W.
,
1997
, “
Magnetic Resonance Microscopy Studies of Cation Diffusion in Cartilage
,”
Biochim. Biophys. Acta
,
1334
(
2–3
), pp.
129
139
.
10.
Quinn
,
T. M.
,
Kocian
,
P.
, and
Meister
,
J. J.
,
2000
, “
Static Compression is Associated With Decreased Diffusivity of Dextrans in Cartilage Explants
,”
Arch. Biochem. Biophys.
,
384
(
2
), pp.
327
334
.
11.
Foy
,
B. D.
, and
Blake
,
J.
,
2001
, “
Diffusion of Paramagnetically Labeled Proteins in Cartilage: Enhancement of the 1-D NMR Imaging Technique
,”
J. Magn. Reson.
,
148
(
1
), pp.
126
134
.
12.
O’Hara
,
B. P.
,
Urban
,
J. P.
, and
Maroudas
,
A.
,
1990
, “
Influence of Cyclic Loading on the Nutrition of Articular Cartilage
,”
Ann. Rheum. Dis.
,
49
(
7
), pp.
536
539
.
13.
Garcia
,
A. M.
,
Frank
,
E. H.
,
Grimshaw
,
P. E.
, and
Grodzinsky
,
A. J.
,
1996
, “
Contributions of Fluid Convection and Electrical Migration to Transport in Cartilage: Relevance to Loading
,”
Arch. Biochem. Biophys.
,
333
(
2
), pp.
317
325
.
14.
Urban
,
J. P.
,
Holm
,
S.
,
Maroudas
,
A.
, and
Nachemson
,
A.
,
1982
, “
Nutrition of the Intervertebral Disc: Effect of Fluid Flow on Solute Transport
,”
Clin. Orthop.
,
170
, pp.
296
302
.
15.
Katz
,
M. M.
,
Hargens
,
A. R.
, and
Garfin
,
S. R.
,
1986
, “
Intervertebral Disc Nutrition. Diffusion Versus Convection
,”
Clin. Orthop.
,
210
, pp.
243
245
.
16.
Garcia
,
A. M.
,
Lark
,
M. W.
,
Trippel
,
S. B.
, and
Grodzinsky
,
A. J.
,
1998
, “
Transport of Tissue Inhibitor of Metalloproteinases-1 Through Cartilage: Contributions of Fluid Flow and Electrical Migration
,”
J. Orthop. Res.
,
16
(
6
), pp.
734
742
.
17.
Fatt
,
I.
, and
Goldstick
,
T. K.
,
1965
, “
Dynamics of Water Transport in Swelling Membranes
,”
J. Colloid Sci.
,
20
, pp.
962
989
.
18.
Sah
,
R. L.
,
Kim
,
Y. J.
,
Doong
,
J. Y.
,
Grodzinsky
,
A. J.
,
Plaas
,
A. H.
, and
Sandy
,
J. D.
,
1989
, “
Biosynthetic Response of Cartilage Explants to Dynamic Compression
,”
J. Orthop. Res.
,
7
(
5
), pp.
619
636
.
19.
Kim
,
Y. J.
,
Sah
,
R. L.
,
Grodzinsky
,
A. J.
,
Plaas
,
A. H.
, and
Sandy
,
J. D.
,
1994
, “
Mechanical Regulation of Cartilage Biosynthetic Behavior: Physical Stimuli
,”
Arch. Biochem. Biophys.
,
311
(
1
), pp.
1
12
.
20.
Palmoski
,
M. J.
, and
Brandt
,
K. D.
,
1984
, “
Effects of Static and Cyclic Compressive Loading on Articular Cartilage Plugs In Vitro
,”
Arthritis Rheum.
,
27
(
6
), pp.
675
681
.
21.
Guilak, F., Sah, R. L., and Setton, L. A., 1997, “Physical Regulation of Cartilage Metabolism,” Basic Orthopaedic Biomechanics, V. C. Mow and W. C. Hayes, eds., Lippincott-Raven, Philadelphia, pp. 179–207.
22.
Guilak
,
F.
,
Meyer
,
B. C.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
,
1994
, “
The Effects of Matrix Compression on Proteoglycan Metabolism in Articular Cartilage Explants
,”
Osteoarthritis Cartilage
,
2
(
2
), pp.
91
101
.
23.
Quinn
,
T. M.
,
Morel
,
V.
, and
Meister
,
J. J.
,
2001
, “
Static Compression of Articular Cartilage Can Reduce Solute Diffusivity and Partitioning: Implications for the Chondrocyte Biological Response
,”
J. Biomech.
,
34
(
11
), pp.
1463
1469
.
24.
Bonassar
,
L. J.
,
Grodzinsky
,
A. J.
,
Frank
,
E. H.
,
Davila
,
S. G.
,
Bhaktav
,
N. R.
, and
Trippel
,
S. B.
,
2001
, “
The Effect of Dynamic Compression on the Response of Articular Cartilage to Insulin-Like Growth Factor-I
,”
J. Orthop. Res.
,
19
(
1
), pp.
11
17
.
25.
Kuettner
,
K. E.
,
1992
, “
Biochemistry of Articular Cartilage in Health and Disease
,”
Clin. Biochem.
,
25
(
3
), pp.
155
163
.
26.
DiMicco
,
M. A.
, and
Sah
,
R. L.
,
2003
, “
Dependence of Cartilage Matrix Composition on Biosynthesis, Diffusion, and Reaction
,”
Transp. Porous Media
,
50
(
1–2
), pp.
57
73
.
27.
Freed
,
L. E.
,
Vunjak-Novakovic
,
G.
, and
Langer
,
R.
,
1993
, “
Cultivation of Cell-Polymer Cartilage Implants in Bioreactors
,”
J. Cell. Biochem.
,
51
(
3
), pp.
257
264
.
28.
Buschmann
,
M. D.
,
Gluzband
,
Y. A.
,
Grodzinsky
,
A. J.
, and
Hunziker
,
E. B.
,
1995
, “
Mechanical Compression Modulates Matrix Biosynthesis in Chondrocyte/Agarose Culture
,”
J. Cell. Sci.
,
108
(Pt 4), pp.
1497
1508
.
29.
Mauck
,
R. L.
,
Soltz
,
M. A.
,
Wang
,
C. C.
,
Wong
,
D. D.
,
Chao
,
P. H.
,
Valhmu
,
W. B.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2000
, “
Functional Tissue Engineering of Articular Cartilage Through Dynamic Loading of Chondrocyte-Seeded Agarose Gels
,”
J. Biomech. Eng.
,
122
(
3
), pp.
252
260
.
30.
Mauck
,
R. L.
,
Nicoll
,
S. B.
,
Seyhan
,
S. L.
,
Ateshian
,
G. A.
, and
Hung
,
C. T.
,
2003
, “
Synergistic Action of Growth Factors and Dynamic Loading for Articular Cartilage Tissue Engineering
,”
Tissue Eng.
,
9
(
4
), pp.
597
612
.
31.
Mills
,
N.
,
1966
, “
Incompressible Mixture of Newtonian Fluids
,”
Int. J. Eng. Sci.
,
4
, pp.
97
112
.
32.
Craine
,
R. E.
,
1971
, “
Oscillations of a Plate in a Binary Mixture of Incompressible Newtonian Fluids
,”
Int. J. Eng. Sci.
,
9
(
12
), pp.
1177
1192
.
33.
Bowen
,
R. M.
,
1980
, “
Incompressible Porous Media Models by Use of the Theory of Mixtures
,”
Int. J. Eng. Sci.
,
18
(
9
), pp.
1129
1148
.
34.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression? Theory and Experiments
,”
J. Biomech. Eng.
,
102
(
1
), pp.
73
84
.
35.
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
,
1987
, “
Cartilage Electromechanics—II. A Continuum Model of Cartilage Electrokinetics and Correlation With Experiments
,”
J. Biomech.
,
20
(
6
), pp.
629
639
.
36.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
,
1991
, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
J. Biomech. Eng.
,
113
(
3
), pp.
245
258
.
37.
Huyghe
,
J. M.
, and
Janssen
,
J. D.
,
1997
, “
Quadriphasic Mechanics of Swelling Incompressible Porous Media
,”
Int. J. Eng. Sci.
,
35
(
8
), pp.
793
802
.
38.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1998
, “
A Mixture Theory for Charged-Hydrated Soft Tissues Containing Multi-Electrolytes: Passive Transport and Swelling Behaviors
,”
J. Biomech. Eng.
,
120
(
2
), pp.
169
180
.
39.
Armstrong
,
C. G.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1984
, “
An Analysis of the Unconfined Compression of Articular Cartilage
,”
J. Biomech. Eng.
,
106
(
2
), pp.
165
173
.
40.
Tinoco, I., 2002, Physical Chemistry: Principles and Applications in Biological Sciences, Prentice-Hall, Upper Saddle River, NJ.
41.
Robinson, R. A., and Stokes, R. H., 1955, Electrolyte Solutions: The Measurement and Interpretation of Conductance, Chemical Potential and Diffusion in Solutions of Simple Electrolytes, Academic Press, New York.
42.
Torzilli, P. A., Askari, E., and Jenkins, J. T., 1990, “Water Content and Solute Diffusion Properties in Articular Cartilage,” Biomechanics of Diarthrodial Joints, V. C. Mow, A. Ratcliffe, and S. L. Y. Woo, eds., Springer-Verlag, New York, pp. 363–390.
43.
Fournier, R. L., 1999, “Solute Diffusion Within Heterogenous Media,” Basic Transport Phenomena in Biomedical Engineering, Taylor & Francis, Philadelphia, pp. 28–32.
44.
Katchalsky, A., and Curran, P. F., 1975, “Isothermal Diffusion and Sedimentation,” Nonequilibrium Thermodynamics in Biophysics, Harvard University Press, Cambridge, pp. 98–102.
45.
Lai
,
W. M.
, and
Mow
,
V. C.
,
1980
, “
Drag-Induced Compression of Articular Cartilage During a Permeation Experiment
,”
Biorheology
,
17
(
1–2
), pp.
111
123
.
46.
Hou
,
J. S.
,
Holmes
,
M. H.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1989
, “
Boundary Conditions at the Cartilage-Synovial Fluid Interface for Joint Lubrication and Theoretical Verifications
,”
J. Biomech. Eng.
,
111
(
1
), pp.
78
87
.
47.
Sun
,
D. N.
,
Gu
,
W. Y.
,
Guo
,
X. E.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1999
, “
A Mixed Finite Element Formulation of Triphasic Mechano-Electrochemical Theory for Charged, Hydrated Soft Tissues
,”
Int. J. Numer. Methods Eng.
,
45
(
10
), pp.
1375
1402
.
48.
Ateshian
,
G. A.
,
Soltz
,
M. A.
,
Mauck
,
R. L.
,
Basalo
,
I. M.
,
Hung
,
C. T.
, and
Lai
,
W. M.
,
2003
, “
The Role of Osmotic Pressure and Tension-Compression Nonlinearity in the Frictional Response of Articular Cartilage
,”
Transp. Porous Media
,
50
, pp.
5
33
.
49.
Van Holde, K. E., Johnson, W. C., and Ho, P. S., 1998, “Thermodynamics of Transport Processes,” Principles of Physical Biochemistry, Prentice-Hall, Upper Saddle River, NJ, pp. 574.
50.
Deen
,
W. M.
,
1987
, “
Hindered Transport of Large Molecules in Liquid-Filled Pores
,”
AIChE J.
,
33
, pp.
1409
1425
.
51.
Holmes
,
M. H.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1985
, “
Singular Perturbation Analysis of the Nonlinear, Flow-Dependent Compressive Stress Relaxation Behavior of Articular Cartilage
,”
J. Biomech. Eng.
,
107
(
3
), pp.
206
218
.
52.
Lee
,
R. C.
,
Frank
,
E. H.
,
Grodzinsky
,
A. J.
, and
Roylance
,
D. K.
,
1981
, “
Oscillatory Compressional Behavior of Articular Cartilage and Its Associated Electromechanical Properties
,”
J. Biomech. Eng.
,
103
(
4
), pp.
280
292
.
53.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
,
2000
, “
Interstitial Fluid Pressurization During Confined Compression Cyclical Loading of Articular Cartilage
,”
Ann. Biomed. Eng.
,
28
(
2
), pp.
150
159
.
54.
Grodzinsky
,
A. J.
,
Levenston
,
M. E.
,
Jin
,
M.
, and
Frank
,
E. H.
,
2000
, “
Cartilage Tissue Remodeling in Response to Mechanical Forces
,”
Annu. Rev. Biomed. Eng.
,
2
, pp.
691
713
.
55.
Lee
,
D. A.
, and
Bader
,
D. L.
,
1997
, “
Compressive Strains at Physiological Frequencies Influence the Metabolism of Chondrocytes Seeded in Agarose
,”
J. Orthop. Res.
,
15
(
2
), pp.
181
188
.
56.
Mow
,
V. C.
, and
Lai
,
W. M.
,
1980
, “
Recent Developments in Synovial Joint Biomechanics
,”
SIAM Rev.
,
22
, pp.
275
317
.
57.
Lai, W. M., and Mow, V. C., 1979, “Flow Fields in a Single-Layer Model of Articular Cartilage Created by a Sliding Load,” ASME Adv. Bioeng., pp. 101–104.
58.
Ateshian
,
G. A.
, and
Wang
,
H.
,
1995
, “
A Theoretical Solution for the Frictionless Rolling Contact of Cylindrical Biphasic Articular Cartilage Layers
,”
J. Biomech.
,
28
(
11
), pp.
1341
1355
.
59.
Ateshian
,
G. A.
, and
Wang
,
X.
,
1998
, “
Sliding Tractions on a Deformable Porous Layer
,”
J. Tribol.
,
120
(
1
), pp.
89
96
.
60.
Bonassar
,
L. J.
,
Grodzinsky
,
A. J.
,
Srinivasan
,
A.
,
Davila
,
S. G.
, and
Trippel
,
S. B.
,
2000
, “
Mechanical and Physicochemical Regulation of the Action of Insulin-Like Growth Factor-I on Articular Cartilage
,”
Arch. Biochem. Biophys.
,
379
(
1
), pp.
57
63
.
61.
Buschmann
,
M. D.
,
Gluzband
,
Y. A.
,
Grodzinsky
,
A. J.
,
Kimura
,
J. H.
, and
Hunziker
,
E. B.
,
1992
, “
Chondrocytes in Agarose Culture Synthesize a Mechanically Functional Extracellular Matrix
,”
J. Orthop. Res.
,
10
(
6
), pp.
745
758
.
62.
Soltz
,
M. A.
,
Stankiewicz
,
A.
,
Mauck
,
R. L.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
1999
, “
Direct Hydraulic Permeability Measurements of Agarose Hydrogels Used as Cell Scaffolds
,”
ASME Adv. Bioeng.
,
43
, pp.
229
230
.
63.
Andarawis, N. A., Seyhan, S. L., Mauck, R. L., Soltz, M. A., Ateshian, G. A., and Hung, C. T., 2001, “A Novel Permeation Device for Hydrogels and Soft Tissues,” Proc. ASME IMECE, paper no. 23149.
64.
Perdue
,
J. F.
,
1984
, “
Chemistry, Structure, and Function of Insulin-Like Growth Factors and Their Receptors: A Review
,”
Can. J. Biochem. Cell Biol.
,
62
(
11
), pp.
1237
1245
.
65.
Enberg
,
G.
,
Carlquist
,
M.
,
Jornvall
,
H.
, and
Hall
,
K.
,
1984
, “
The Characterization of Somatomedin A, Isolated by Microcomputer-Controlled Chromatography, Reveals an Apparent Identity to Insulin-Like Growth Factor 1
,”
Eur. J. Biochem.
,
143
(
1
), pp.
117
124
.
66.
Kuffer
,
A. D.
, and
Herington
,
A. C.
,
1984
, “
Proteolytic Conversion of Insulin-Like Growth Factors to an Acidic Form(s)
,”
Biochem. J.
,
223
(
1
), pp.
97
103
.
67.
Herington
,
A. C.
, and
Kuffer
,
A. D.
,
1984
, “
Insulin-Like Growth Factor Characteristics of an Acidic Non-Suppressible Insulin-Like Activity
,”
Biochem. J.
,
223
(
1
), pp.
89
96
.
68.
Herington
,
A. C.
,
Cornell
,
H. J.
, and
Kuffer
,
A. D.
,
1983
, “
Recent Advances in the Biochemistry and Physiology of the Insulin-Like Growth Factor/Somatomedin Family
,”
Int. J. Biochem.
,
15
(
10
), pp.
1201
1210
.
69.
Kim
,
M. K.
,
Warren
,
T. C.
, and
Kimball
,
E. S.
,
1985
, “
Purification and Characterization of a Low Molecular Weight Transforming Growth Factor From the Urine of Melanoma Patients
,”
J. Biol. Chem.
,
260
(
16
), pp.
9237
9243
.
70.
Yamaoka
,
K.
,
Hirai
,
R.
,
Tsugita
,
A.
, and
Mitsui
,
H.
,
1984
, “
The Purification of an Acid- and Heat-Labile Transforming Growth Factor From an Avian Sarcoma Virus-Transformed Rat Cell Line
,”
J. Cell Physiol.
,
119
(
3
), pp.
307
314
.
71.
Wang
,
C. C.-B.
,
Soltz
,
M. A.
,
Mauck
,
R. L.
,
Valhmu
,
W. B.
,
Ateshian
,
G. A.
, and
Hung
,
C. T.
,
2000
, “
Comparison of the Equilibrium Axial Strain Distribution in Articular Cartilage Explants and Cell-Seeded Alginate Disks Under Unconfined Compression
,”
Trans. Orthop. Res. Soc.
,
25
, p.
131
131
.
72.
Maroudas, A., 1979, “Physicochemical Properties of Articular Cartilage,” Adult Articular Cartilage, M. A. R. Freeman, ed., Pitman Medical, Kent, pp. 215–290.
73.
Johnson
,
E. M.
,
Berk
,
D. A.
,
Jain
,
R. K.
, and
Deen
,
W. M.
,
1995
, “
Diffusion and Partitioning of Proteins in Charged Agarose Gels
,”
Biophys. J.
,
68
(
4
), pp.
1561
1568
.
74.
Lai
,
W. M.
,
Mow
,
V. C.
,
Sun
,
D. D.
, and
Ateshian
,
G. A.
,
2000
, “
On the Electric Potentials Inside a Charged Soft Hydrated Biological Tissue: Streaming Potential Versus Diffusion Potential
,”
J. Biomech. Eng.
,
122
(
4
), pp.
336
346
.
75.
Lai
,
W. M.
,
Sun
,
D. D.
,
Ateshian
,
G. A.
,
Guo
,
X. E.
, and
Mow
,
V. C.
,
2002
, “
Electrical Signals for Chondrocytes in Cartilage
,”
Biorheology
,
39
(
1–2
), pp.
39
45
.
76.
Mow
,
V. C.
,
Ateshian
,
G. A.
,
Lai
,
W. M.
, and
Gu
,
W. Y.
,
1998
, “
Effects of Fixed Charges on the Stress-Relaxation Behavior of Hydrated Soft Tissues in a Confined Compression Problem
,”
Int. J. Solids Struct.
,
35
(
34–35
), pp.
4945
4962
.
77.
Wang
,
C. C.
,
Hung
,
C. T.
, and
Mow
,
V. C.
,
2001
, “
An Analysis of the Effects of Depth-Dependent Aggregate Modulus on Articular Cartilage Stress-Relaxation Behavior in Compression
,”
J. Biomech.
,
34
(
1
), pp.
75
84
.
78.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
,
2000
, “
A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-Compression Nonlinearity in Articular Cartilage
,”
J. Biomech. Eng.
,
122
(
6
), pp.
576
586
.
79.
Huang
,
C. Y.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
,
2001
, “
The Role of Flow-Independent Viscoelasticity in the Biphasic Tensile and Compressive Responses of Articular Cartilage
,”
J. Biomech. Eng.
,
123
(
5
), pp.
410
417
.
80.
Horner
,
H. A.
, and
Urban
,
J. P.
,
2001
, “
2001 Volvo Award Winner in Basic Science Studies: Effect of Nutrient Supply on the Viability of Cells From the Nucleus Pulposus of the Intervertebral Disc
,”
Spine
,
26
(
23
), pp.
2543
2549
.
81.
Bhakta
,
N. R.
,
Garcia
,
A. M.
,
Frank
,
E. H.
,
Grodzinsky
,
A. J.
, and
Morales
,
T. I.
,
2000
, “
The Insulin-Like Growth Factors (IGFs) I and II Bind to Articular Cartilage Via the IGF-Binding Proteins
,”
J. Biol. Chem.
,
275
(
8
), pp.
5860
5866
.
82.
Pedrozo
,
H. A.
,
Schwartz
,
Z.
,
Gomez
,
R.
,
Ornoy
,
A.
,
Xin-Sheng
,
W.
,
Dallas
,
S. L.
,
Bonewald
,
L. F.
,
Dean
,
D. D.
, and
Boyan
,
B. D.
,
1998
, “
Growth Plate Chondrocytes Store Latent Transforming Growth Factor (TGF)-Beta 1 in Their Matrix Through Latent TGF-Beta 1 Binding Protein-1
,”
J. Cell Physiol.
,
177
(
2
), pp.
343
354
.
83.
Chintala
,
S. K.
,
Miller
,
R. R.
, and
McDevitt
,
C. A.
,
1994
, “
Basic Fibroblast Growth Factor Binds to Heparan Sulfate in the Extracellular Matrix of Rat Growth Plate Chondrocytes
,”
Arch. Biochem. Biophys.
,
310
(
1
), pp.
180
186
.
84.
Lai
,
W. M.
,
Mow
,
V. C.
, and
Roth
,
V.
,
1981
, “
Effects of Nonlinear Strain-Dependent Permeability and Rate of Compression on the Stress Behavior of Articular Cartilage
,”
J. Biomech. Eng.
,
103
(
2
), pp.
61
66
.
85.
Gu
,
W. Y.
,
Yao
,
H.
,
Huang
,
C. Y.
, and
Cheung
,
H. S.
,
2003
, “
New Insight Into Deformation-Dependent Hydraulic Permeability of Gels and Cartilage, and Dynamic Behavior of Agarose Gels in Confined Compression
,”
J. Biomech.
,
36
(
4
), pp.
593
598
.
86.
Luby-Phelps
,
K.
,
Castle
,
P. E.
,
Taylor
,
D. L.
, and
Lanni
,
F.
,
1987
, “
Hindered Diffusion of Inert Tracer Particles in the Cytoplasm of Mouse 3T3 Cells
,”
Proc. Natl. Acad. Sci. U.S.A.
,
84
, pp.
4910
4913
.
87.
Allhands
,
R. V.
,
Torzilli
,
P. A.
, and
Kallfelz
,
F. A.
,
1984
, “
Measurement of Diffusion of Uncharged Molecules in Articular Cartilage
,”
Cornell Vet.
,
74
(
2
), pp.
111
123
.
88.
Roger
,
P.
,
Mattisson
,
C.
,
Axelsson
,
A.
, and
Zacchi
,
G.
,
2000
, “
Use of Holographic Laser Interferometry to Study the Diffusion of Polymers in Gels
,”
Biotechnol. Bioeng.
,
69
(
6
), pp.
654
663
.
89.
Johnson
,
E. M.
,
Berk
,
D. A.
,
Jain
,
R. K.
, and
Deen
,
W. M.
,
1996
, “
Hindered Diffusion in Agarose Gels: Test of Effective Medium Model
,”
Biophys. J.
,
70
(
2
), pp.
1017
1023
.
90.
Mow, V. C., Hou, J. S., Owens, J. M., and Ratcliffe, A., 1990, “Biphasic and Quasilinear Viscoelastic Theories for Hydrated Soft Tissues,” Biomechanics of Diarthrodial Joints, V. C. Mow, A. Ratcliffe, and S. L. Y. Woo, eds., Springer-Verlag, New York, pp. 215–260.
91.
Williamson
,
A. K.
,
Chen
,
A. C.
, and
Sah
,
R. L.
,
2001
, “
Compressive Properties and Function-Composition Relationships of Developing Bovine Articular Cartilage
,”
J. Orthop. Res.
,
19
(
6
), pp.
1113
1121
.
92.
Freed
,
L. E.
,
Langer
,
R.
,
Martin
,
I.
,
Pellis
,
N. R.
, and
Vunjak-Novakovic
,
G.
,
1997
, “
Tissue Engineering of Cartilage in Space
,”
Proc. Natl. Acad. Sci. U.S.A.
,
94
(
25
), pp.
13885
13890
.
93.
Chang
,
S. C.
,
Rowley
,
J. A.
,
Tobias
,
G.
,
Genes
,
N. G.
,
Roy
,
A. K.
,
Mooney
,
D. J.
,
Vacanti
,
C. A.
, and
Bonassar
,
L. J.
,
2001
, “
Injection Molding of Chondrocyte/Alginate Constructs in the Shape of Facial Implants
,”
J. Biomed. Mater. Res.
,
55
(
4
), pp.
503
511
.
You do not currently have access to this content.