A numerical method is developed for simulating unsteady, 3-D, laminar flow through a bileaflet mechanical heart valve with the leaflets fixed. The method employs a dual-time-stepping artificial-compressibility approach together with overset (Chimera) grids and is second-order accurate in space and time. Calculations are carried out for the full 3-D valve geometry under steady inflow conditions on meshes with a total number of nodes ranging from 4×105 to 1.6×106. The computed results show that downstream of the leaflets the flow is dominated by two pairs of counter-rotating vortices, which originate on either side of the central orifice in the aortic sinus and rotate such that the common flow of each pair is directed away from the aortic wall. These vortices intensify with Reynolds number, and at a Reynolds number of approximately 1200 their complex interaction leads to the onset of unsteady flow and the break of symmetry with respect to both geometric planes of symmetry. Our results show the highly 3-D structure of the flow; question the validity of computationally expedient assumptions of flow symmetry; and demonstrate the need for highly resolved, fully 3-D simulations if computational fluid dynamics is to accurately predict the flow in prosthetic mechanical heart valves.

1.
Peskin
,
C. S.
,
1972
, “
Flow Patterns Around Heart Valves: A Numerical Method
,”
J. Comput. Phys.
,
10
, pp.
252
271
.
2.
Huang
,
Z. J.
,
Merkle
,
C. L.
,
Abdallah
,
S.
, and
Tarbell
,
J. M.
,
1994
, “
Numerical Simulation of Unsteady Laminar Flow Through a Tilting Disk Heart Valve: Prediction of Vortex Shedding
,”
J. Biomech.
,
27
(
4
), pp.
391
402
.
3.
Shim
,
E.-B.
, and
Chang
,
K.-S.
,
1997
, “
Numerical Analysis of Three-Dimensional Bjo¨rk-Shiley Valvular Flow in an Aorta
,”
ASME J. Biomech. Eng.
,
119
, pp.
45
51
.
4.
King
,
M. J.
,
David
,
T.
, and
Fisher
,
J.
,
1994
, “
An Initial Parametric Study on Fluid Flow Through Bileaflet Mechanical Heart Valves Using Computational Fluid Dynamics
,”
J. Eng. Med.
,
208
, pp.
63
72
.
5.
King
,
M. J.
,
Corden
,
J.
,
David
,
T.
, and
Fisher
,
J.
,
1996
, “
A Three-Dimensional, Time-Dependent Analysis of Flow Through a Bileaflet Mechanical Heart Valve: Comparison of Experimental and Numerical Results
,”
J. Biomech.
,
29
(
5
), pp.
609
618
.
6.
King
,
M. J.
,
David
,
T.
, and
Fisher
,
J.
,
1997
, “
Three-Dimensional Study of the Effect of Two Leaflet Opening Angles on the Time-Dependent Flow Through a Bileaflet Mechanical Heart Valve
,”
Med. Eng. Phys.
,
19
(
5
), pp.
235
241
.
7.
Kiris
,
C.
,
Kwak
,
D.
,
Rogers
,
S.
, and
Chang
,
I.-D.
,
1997
, “
Computational Approach for Probing the Flow Through Artificial Heart Devices
,”
ASME J. Biomech. Eng.
,
119
, pp.
452
460
.
8.
Krafczyk
,
M.
,
Cerrolaza
,
M.
,
Schulz
,
M.
, and
Rank
,
E.
,
1998
, “
Analysis of 3D Transient Blood Flow Passing Through an Artificial Aortic Valve by Lattice-Boltzmann Methods
,”
J. Biomech.
,
31
, pp.
453
462
.
9.
Aluri
,
S.
, and
Chandran
,
K. B.
,
2001
, “
Numerical Simulation of Mechanical Mitral Heart Valve Closure
,”
Ann. Biomed. Eng.
,
29
, pp.
665
676
.
10.
Lai
,
Y. G.
,
Chandran
,
K. B.
, and
Lemmon
,
J.
,
2002
, “
A Numerical Simulation of Mechanical Heart Valve Closure Fluid Dynamics
,”
J. Biomech.
,
35
, pp.
881
892
.
11.
Rosenfeld
,
M.
,
Avrahami
,
I.
, and
Einav
,
S.
,
2002
, “
Unsteady Effects on the Flow Across Tilting Disk Valves
,”
ASME J. Biomech. Eng.
,
124
, pp.
21
29
.
12.
de Hart, J., 2002, “Fluid-Strucutre Interaction in the Aortic Heart Valve,” Ph.D. thesis, Eindhoven University of Technology, Eindhoven, The Netherlands.
13.
Lin
,
F. B.
, and
Sotiropoulos
,
F.
,
1997
, “
Assessment of Artificial Dissipation Models for Three-Dimensional Incompressible Flow Solutions
,”
ASME J. Fluids Eng.
,
119
(
2
), pp.
331
340
.
14.
Lin
,
F. B.
, and
Sotiropoulos
,
F.
,
1997
, “
Strongly Coupled Multigrid Method for 3-D Incompressible Flows Using Near-Wall Turbulence Closures
,”
ASME J. Fluids Eng.
,
119
(
2
), pp.
314
324
.
15.
Merkle, C. L., and Athavale, M., 1987, “Time-Accurate Unsteady Incompressible Flow Algorithm Based on Artificial Compressibility,” Technical report, AIAA Pap., 87-1137.
16.
Sotiropoulos
,
F.
, and
Ventikos
,
Y.
,
1998
, “
Transition From a Bubble-Type Vortex Breakdown to a Columnar Vortex in a Confined Swirling Flow
,”
Int. J. Heat Fluid Flow
,
19
, pp.
446
458
.
17.
Gin
,
R.
,
Straatman
,
A. G.
, and
Steinman
,
D. A.
,
2002
, “
A Dual-Pressure Boundary Condition for use in Simulations of Bifurcating Conduits
,”
ASME J. Biomech. Eng.
,
124
, pp.
617
619
.
18.
Thompson
,
K. W.
,
1990
, “
Time-Dependent Boundary Conditions for Hyperbolic Systems II
,”
J. Comput. Phys.
,
89
, pp.
439
461
.
19.
Nicoud
,
F.
, and
Scho¨nfeld
,
T.
,
2002
, “
Integral Boundary Conditions for Unsteady Biomedical CFD Applications
,”
Int. J. Numer. Methods Fluids
,
40
, pp.
457
465
.
20.
Yoganathan
,
A. P.
,
Chaux
,
A.
,
Gray
,
R. J.
,
de Robertis
,
M.
, and
Matloff
,
J. M.
,
1982
, “
Flow Characteristics of the St. Jude Prosthetic Valve: An In Vitro Study
,”
Artif. Organs
,
6
, pp.
288
294
.
21.
Healy, T. H., 2001, “Multi-Block and Overset-Block Domain Decomposition Techniques for Cardiovascular Flow Simulation,” Ph.D. thesis, Georgia Institute of Technology.
22.
Steger
,
J. L.
, and
Benek
,
J. A.
,
1987
, “
On the Use of Composite Grid Schemes in Computational Aerodynamics
,”
Comput. Methods Appl. Mech. Eng.
,
64
, pp.
301
320
.
23.
Tang, H. S., 2001, “Domain Decomposition Algorithms for 3-D Unsteady Incompressible Flows,” Ph.D. thesis, Georgia Institute of Technology.
24.
Tang, H. S., Jones, S. C., and Sotiropoulos, F., 2003, “An Overset-Grid Method for 3-D Unsteady Incompressible Flows,” J. Comput. Phys., in press.
25.
Belaidi
,
A.
,
Johnson
,
M. W.
, and
Humphrey
,
J. A. C.
,
1992
, “
Flow Instability in a Curved Duct of Rectangular Cross Section
,”
ASME J. Fluids Eng.
,
114
, pp.
585
592
.
26.
Gresho
,
P. M.
,
Gartling
,
D. K.
,
Torczynski
,
J. R.
,
Cliffe
,
K. A.
,
Winters
,
K. H.
,
Garratt
,
T. J.
,
Spence
,
A.
, and
Goodrich
,
J. W.
,
1993
, “
Is the Steady Viscous Incompressible Two-Dimensional Flow Over a Backward-Facing Step at Re=800 Stable?
Int. J. Numer. Methods Fluids
,
17
, pp.
501
541
.
You do not currently have access to this content.