Unconfined compression test has been frequently used to study the mechanical behaviors of articular cartilage, both theoretically and experimentally. It has also been used in explant and gel-cell-complex studies in tissue engineering. In biphasic and poroelastic theories, the effect of charges fixed on the proteoglycan macromolecules in articular cartilage is embodied in the apparent compressive Young’s modulus and the apparent Poisson’s ratio of the tissue, and the fluid pressure is considered to be the portion above the osmotic pressure. In order to understand how proteoglycan fixed charges might affect the mechanical behaviors of articular cartilage, and in order to predict the osmotic pressure and electric fields inside the tissue in this experimental configuration, it is necessary to use a model that explicitly takes into account the charged nature of the tissue and the flow of ions within its porous interstices. In this paper, we used a finite element model based on the triphasic theory to study how fixed charges in the porous-permeable soft tissue can modulate its mechanical and electrochemical responses under a step displacement in unconfined compression. The results from finite element calculations showed that: 1) A charged tissue always supports a larger load than an uncharged tissue of the same intrinsic elastic moduli. 2) The apparent Young’s modulus (the ratio of the equilibrium axial stress to the axial strain) is always greater than the intrinsic Young’s modulus of an uncharged tissue. 3) The apparent Poisson’s ratio (the negative ratio of the lateral strain to the axial strain) is always larger than the intrinsic Poisson’s ratio of an uncharged tissue. 4) Load support derives from three sources: intrinsic matrix stiffness, hydraulic pressure and osmotic pressure. Under the unconfined compression, the Donnan osmotic pressure can constitute between 13%–22% of the total load support at equilibrium. 5) During the stress-relaxation process following the initial instant of loading, the diffusion potential (due to the gradient of the fixed charge density and the associated gradient of ion concentrations) and the streaming potential (due to fluid convection) compete against each other. Within the physiological range of material parameters, the polarity of the electric potential depends on both the mechanical properties and the fixed charge density (FCD) of the tissue. For softer tissues, the diffusion effects dominate the electromechanical response, while for stiffer tissues, the streaming potential dominates this response. 6) Fixed charges do not affect the instantaneous strain field relative to the initial equilibrium state. However, there is a sudden increase in the fluid pressure above the initial equilibrium osmotic pressure. These new findings are relevant and necessary for the understanding of cartilage mechanics, cartilage biosynthesis, electromechanical signal transduction by chondrocytes, and tissue engineering.

1.
Armstrong
,
C. G.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1984
, “
An Analysis of the Unconfined Compression of Articular Cartilage
,”
ASME J. Biomech. Eng.
106
(
2
), pp.
165
173
.
2.
Brown
,
T. D.
, and
Singerman
,
R. J.
,
1986
, “
Experimental Determination of the Linear Biphasic Constitutive Coefficients of Human Fetal Proximal Femoral Chondroepiphysis
,”
J. Biomech.
,
19
(
8
), pp.
597
605
.
3.
Spilker, R., Suh, J., and Mow, V., 1987, “A Linear Biphasic Finite Element Analysis of the Unconfined Compression of Articular Cartilage,” ASME Winter Meeting, Advances in Bioengineering, pp. 49–50.
4.
Spilker
,
R. L.
,
Suh
,
J. K.
, and
Mow
,
V. C.
,
1990
, “
Effects of Friction on the Unconfined Compressive Response of Articular Cartilage: a Finite Element Analysis
,”
ASME J. Biomech. Eng.
,
112
(
2
), pp.
138
146
.
5.
Soulhat
,
J.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
,
1999
, “
A Fibril-Network-Reinforced Biphasic Model of Cartilage in Unconfined Compression
,”
ASME J. Biomech. Eng.
,
121
(
3
), pp.
340
347
.
6.
Li
,
L. P.
,
Soulhat
,
J.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
,
1999
, “
Nonlinear Analysis of Cartilage in Unconfined Ramp Compression Using a Fibril Reinforced Poroelastic Model
,”
Clin. Biomech. (Bristol, Avon)
,
14
(
9
), pp.
673
682
.
7.
Li
,
L. P.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
,
2000
, “
A Fibril Reinforced Nonhomogeneous Poroelastic Model for Articular Cartilage: Inhomogeneous Response in Unconfined Compression
,”
J. Biomech.
,
33
(
12
), pp.
1533
1541
.
8.
Fortin
,
M.
,
Soulhat
,
J.
,
Shirazi-Adl
,
A.
,
Hunziker
,
E. B.
, and
Buschmann
,
M. D.
,
2000
, “
Unconfined Compression of Articular Cartilage: Nonlinear Behavior and Comparison With a Fibril-Reinforced Biphasic Model
,”
ASME J. Biomech. Eng.
,
122
(
2
), pp.
189
195
.
9.
DiSilvestro
,
M. R.
,
Zhu
,
Q.
,
Wong
,
M.
,
Jurvelin
,
J. S.
, and
Suh
,
J. K.
,
2001
, “
Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage: I—Simultaneous Prediction of Reaction Force and Lateral Displacement
,”
ASME J. Biomech. Eng.
,
123
(
2
), pp.
191
197
.
10.
DiSilvestro
,
M. R.
,
Zhu
,
Q.
, and
Suh
,
J. K.
,
2001
, “
Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage: II—Effect of Variable Strain Rates
,”
ASME J. Biomech. Eng.
,
123
(
2
), pp.
198
200
.
11.
Jurvelin
,
J. S.
,
Buschmann
,
M. D.
, and
Hunziker
,
E. B.
,
1997
, “
Optical and Mechanical Determination of Poisson’s Ratio of Adult Bovine Humeral Articular Cartilage
,”
J. Biomech.
,
30
(
3
), pp.
235
241
.
12.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
,
2000
, “
A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-Compression Nonlinearity in Articular Cartilage
,”
ASME J. Biomech. Eng.
,
122
(
6
), pp.
576
586
.
13.
Huang
,
C. Y.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
,
2001
, “
Role of Flow-Independent Viscoelasticity in the Tensile and Compressive Responses of Biphasic Articular Cartilage
,”
ASME J. Biomech. Eng.
,
123
, pp.
410
417
.
14.
Huang
,
C. Y.
,
Soltz
,
M. A.
,
Kopacz
,
M.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
,
2003
, “
Experimental Verification of the Role of Intrinsic Matrix Viscoelasticity and Tension-Compression Nonlinearity in the Biphasic Response of Cartilage in Unconfined Compression
,”
ASME J. Biomech. Eng.
,
125
, pp.
84
93
.
15.
Sah
,
R. L.
,
Doong
,
J. Y.
,
Grodzinsky
,
A. J.
,
Plaas
,
A. H.
, and
Sandy
,
J. D.
,
1991
, “
Effects of Compression on the Loss of Newly Synthesized Proteoglycans and Proteins From Cartilage Explants
,”
Arch. Biochem. Biophys.
,
286
(
1
), pp.
20
29
.
16.
Kim
,
Y. J.
,
Sah
,
R. L.
,
Grodzinsky
,
A. J.
,
Plaas
,
A. H.
, and
Sandy
,
J. D.
,
1994
, “
Mechanical Regulation of Cartilage Biosynthetic Behavior: Physical Stimuli
,”
Arch. Biochem. Biophys.
,
311
(
1
), pp.
1
12
.
17.
Buschmann
,
M. D.
,
Gluzband
,
Y. A.
,
Grodzinsky
,
A. J.
, and
Hunziker
,
E. B.
,
1995
, “
Mechanical Compression Modulates Matrix Biosynthesis in Chondrocyte/Agarose Culture
,”
J. Cell. Sci.
,
108
(
Pt 4
), pp.
1497
1508
.
18.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression? Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
(
1
), pp.
73
84
.
19.
Cohen
,
B.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1998
, “
A Transversely Isotropic Biphasic Model for Unconfined Compression of Growth Plate and Chondroepiphysis
,”
ASME J. Biomech. Eng.
,
120
(
4
), pp.
491
496
.
20.
Curnier
,
A.
,
He
,
Q.-C.
, and
Zysset
,
P.
,
1995
, “
Conewise Linear Elastic Materials
,”
J. Elast.
,
37
, pp.
1
38
.
21.
Bollet
,
A. J.
, and
Nance
,
J. L.
,
1966
, “
Biochemical Findings in Normal and Osteoarthritic Articular Cartilage: II—Chondroitin Sulfate Concentration and Chain Length, Water and Ash Contents
,”
J. Clin. Invest.
,
45
, pp.
1170
1177
.
22.
Mankin
,
H. J.
, and
Thrasher
,
A. Z.
,
1975
, “
Water Content and Binding in Normal and Osteoarthritic Human Cartilage
,”
J. Bone Jt. Surg.
,
57A
, pp.
76
79
.
23.
Maroudas
,
A.
,
1968
, “
Physicochemical Properties of Cartilage in the Light of Ion Exchange Theory
,”
Biophys. J.
,
8
(
5
), pp.
575
595
.
24.
Maroudas, A., 1979, “Physicochemical Properties of Articular Cartilage,” in: Adult Articular Cartilage, 2 ed, M. A. R. Freeman, ed., Pitman Medical, Kent, UK, pp. 215–290.
25.
Torzilli
,
P. A.
,
Rose
,
D. E.
, and
Dethmers
,
D. A.
,
1982
, “
Equilibrium Water Partition in Articular Cartilage
,”
Biorheology
,
19
(
4
), pp.
519
537
.
26.
Muir
,
H.
,
1983
, “
Proteoglycans as Organizers of the Intercellular Matrix
,”
Biochem. Soc. Trans.
,
11
(
6
), pp.
613
622
.
27.
Hascall, V., and Hascall, G., 1983, “Proteoglycans,” in: Cell Biology of Extracellular Matrix, Plenum Press, pp. 39–63.
28.
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
,
1987
, “
Cartilage Electromechanics—I. Electrokinetic Tranduction and the Effects of pH and Ionic Strength
,”
J. Biomech.
,
20
, pp.
615
627
.
29.
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
,
1987
, “
Cartilage Electromechanics—II. A Continuum Model of Cartilage Electrokinetics d Correlations With Experiments
,”
J. Biomech.
,
20
, pp.
629
639
.
30.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
,
1991
, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
113
(
3
), pp.
245
258
.
31.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1993
, “
Transport of Fluid and Ions Through a Porous-Permeable Charged-Hydrated Tissue, and Streaming Potential Data on Normal Bovine Articular Cartilage
,”
J. Biomech.
,
26
(
6
), pp.
709
723
.
32.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1998
, “
A Mixture Theory for Charged-Hydrated Soft Tissues Containing Multi-Electrolytes: Passive Transport and Swelling Behaviors
,”
ASME J. Biomech. Eng.
,
120
(
2
), pp.
169
180
.
33.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1997
, “
A Triphasic Analysis of Negative Osmotic Flows Through Charged Hydrated Soft Tissues
,”
J. Biomech.
,
30
(
1
), pp.
71
78
.
34.
Huyghe
,
J. M.
, and
Janssen
,
J. D.
,
1997
, “
Quadriphasic Mechanics of Swelling in Compressible Porous Media
,”
Int. J. Eng. Sci.
,
35
, pp.
793
802
.
35.
Frijns, A. J. H., 2000, “A Four-Component Mixture Theory Applied to Cartilaginous Tissues: Numerical Modeling and Experiments,” Ph.D. thesis, Eindhoven University of Technology.
36.
Sun
,
D. N.
,
Gu
,
W. Y.
,
Guo
,
X. E.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1999
, “
A Mixed Finite Element Formulation of Triphasic Mechano-Electrochemical Theory for Charged, Hydrated Biological Soft Tissues
,”
Int. J. Numer. Methods Eng.
,
45
, pp.
1375
1402
.
37.
Schneiderman
,
R.
,
Keret
,
D.
, and
Maroudas
,
A.
,
1986
, “
Effects of Mechanical and Osmotic Pressure on the Rate of Glycosaminoglycan Synthesis in the Human Adult Femoral Head Cartilage: An in Vitro Study
,”
J. Orthop. Res.
,
4
(
4
), pp.
393
408
.
38.
Grodzinsky, A. J., Frank, E. H., Kim, Y. J., and Buschmann, M. D., 1996, “The Role of Specific Macromolecules in Cell-Matrix Interactions and in Matrix Function: Physicochemical and Mechanical Mediators of Chondrocyte Biosynthesis,” in: Extracellular Matrix, Vol. 1, W. D. Comper, Harwood Academic Publishers, Melbourne, Australia, pp. 310–334.
39.
Chen
,
S. S.
,
Falcovitz
,
H. H.
,
Schneiderman
,
R.
,
Maroudas
,
A.
, and
Sah
,
R. L.
,
2001
, “
Depth-Dependent Compressive Properties of Normal Aged Human Femoral Head Articular Cartilage: Relationship to Fixed Charged Density
,”
Osteoarthritis Cartilage
,
9
, pp.
561
569
.
40.
Lai
,
W. M.
,
Mow
,
V. C.
,
Sun
,
D. D.
, and
Ateshian
,
G. A.
,
2000
, “
On the Electric Potentials Inside a Charged Soft Hydrated Biological Tissue: Streaming Potential Versus Diffusion Potential
,”
ASME J. Biomech. Eng.
,
122
(
4
), pp.
336
346
.
41.
Sun, D. N., Guo, X. E., Lai, W. M., and Mow, V. C., 2003, “The Fixed Charge Inhomogeneity Amplifies the Mechano-Electrochemical Behaviors of Articular Cartilage Under Compression,” Manuscript in preparation.
42.
Katchalsky, A., and Curran, P., 1975, “Nonequilibrium Thermodynamics in Biophysics,” 4th edition, Harvard University Press, Cambridge.
43.
Bachrach
,
N. M.
,
Mow
,
V. C.
, and
Guilak
,
F.
,
1998
, “
Incompressibility of the Solid Matrix of Articular Cartilage Under High Hydrostatic Pressures
,”
J. Biomech.
,
31
(
5
), pp.
445
451
.
44.
Mow
,
V. C.
,
Gibbs
,
M. C.
,
Lai
,
W. M.
,
Zhu
,
W.
, and
Athanasiou
,
K. A.
,
1989
, “
Biphasic Indentation of Articular Cartilage—Part II. A Numerical Algorithm and an Experimental Study
,”
J. Biomech.
,
22
(
8/9
), pp.
853
861
.
45.
Mow
,
V. C.
,
Ateshian
,
G. A.
,
Lai
,
W. M.
, and
Gu
,
W. Y.
,
1998
, “
Effects of Fixed Charges on the Stress-Relaxation Behavior of Hydrated Soft Tissues in a Confined Compression Problem
,”
Int. J. Solids Struct.
,
35
, pp.
945
962
.
46.
Chen
,
A. C.
,
Nguyen
,
T. T.
, and
Sah
,
R. L.
,
1999
, “
Streaming Potential During the Confined Compression Creep Test of Normal and Proteoglycan-Depleted Cartilage
,”
Ann. Biomed. Eng.
,
25
, pp.
269
277
.
47.
Zhu
,
W.
,
Mow
,
V. C.
,
Koob
,
T. J.
, and
Eyre
,
D. R.
,
1993
, “
Viscoelastic Shear Properties of Articular Cartilage and the Effects of Glycosidase Treatments
,”
J. Orthop. Res.
,
11
(
6
), pp.
771
781
.
48.
Ateshian
,
G. A.
,
Warden
,
W. H.
,
Kim
,
J. J.
,
Grelsamer
,
R. P.
, and
Mow
,
V. C.
,
1997
, “
Finite Deformation Biphasic Material Properties of Bovine Articular Cartilage From Confined Compression Experiments
,”
J. Biomech.
,
30
(
11–12
), pp.
1157
1164
.
49.
Schinagl
,
R. M.
,
Ting
,
M. K.
,
Price
,
J. H.
, and
Sah
,
R. L.
,
1996
, “
Video Microscopy to Quantitate the Inhomogeneous Equilibrium Strain Within Articular Cartilage During Confined Compression
,”
Ann. Biomed. Eng.
,
24
(
4
), pp.
500
512
.
50.
Schinagl
,
R. M.
,
Gurskis
,
D.
,
Chen
,
A. C.
, and
Sah
,
R. L.
,
1997
, “
Depth-Dependent Confined Compression Modulus of Full-Thickness Bovine Articular Cartilage
,”
J. Orthop. Res.
,
15
(
4
), pp.
499
506
.
51.
Wang
,
C. C.
,
Hung
,
C. T.
, and
Mow
,
V. C.
,
2001
, “
An Analysis of the Effects of Depth-Dependent Aggregate Modulus on Articular Cartilage Stress-Relaxation Behavior in Compression
,”
J. Biomech.
,
34
(
1
), pp.
75
84
.
You do not currently have access to this content.