Despite the importance of multiaxial failure of trabecular bone in many biomechanical applications, to date no complete multiaxial failure criterion for human trabecular bone has been developed. By using experimentally validated nonlinear high-resolution, micro-mechanical finite-element models as a surrogate for multiaxial loading experiments, we determined the three-dimensional normal strain yield surface and all combinations of the two-dimensional normal-shear strain yield envelope. High-resolution finite-element models of three human femoral neck trabecular bone specimens obtained through micro-computed tomography were used. In total, 889 multiaxial-loading cases were analyzed, requiring over 41,000 CPU hours on parallel supercomputers. Our results indicated that the multiaxial yield behavior of trabecular bone in strain space was homogeneous across the specimens and nearly isotropic. Analysis of stress-strain curves along each axis in the 3-D normal strain space indicated uncoupled yield behavior, whereas substantial coupling was seen for normal-shear loading. A modified super-ellipsoid surface with only four parameters fit the normal strain yield data very well with an arithmetic error±SD less than 0.04±5.1%. Furthermore, the principal strains associated with normal-shear loading showed excellent agreement with the yield surface obtained for normal strain loading (arithmetic error±SD<2.5±6.5%). We conclude that the four-parameter “Modified Super-Ellipsoid” yield surface presented here describes the multiaxial failure behavior of human femoral neck trabecular bone very well.

1.
Lotz
,
J. C.
,
Cheal
,
E. J.
, and
Hayes
,
W. C.
,
1991
, “
Fracture prediction for the proximal femur using finite-element models: Part I-Linear analysis
,”
J. Biomech. Eng.
,
113
, pp.
353
360
.
2.
Lotz
,
J. C.
,
Cheal
,
E. J.
, and
Hayes
,
W. C.
,
1991
, “
Fracture prediction for the proximal femur using finite-element models: Part II-Nonlinear analysis
,”
J. Biomech. Eng.
,
113
, pp.
361
365
.
3.
Cheal
,
E. J.
,
Hayes
,
W. C.
,
Lee
,
C. H.
,
Snyder
,
B. D.
, and
Miller
,
J.
,
1985
, “
Stress analysis of a condylar knee tibial component: influence of metaphyseal shell properties and cement injection depth
,”
J. Orthop. Res.
,
3
, pp.
424
434
.
4.
Keyak
,
J. H.
, and
Rossi
,
S. A.
,
2000
, “
Prediction of femoral fracture load using finite element models: an examination of stress- and strain-based failure theories
,”
J. Biomech.
,
33
, pp.
209
214
.
5.
Cody
,
D. D.
,
Gross
,
G. J.
,
Hou
,
F. J.
,
Spencer
,
H. J.
,
Goldstein
,
S. A.
, and
Fyhrie
,
D. P.
,
1999
, “
Femoral strength is better predicted by finite-element models than QCT and DXA
,”
J. Biomech.
,
32
, pp.
1013
1020
.
6.
Ford
,
C. M.
,
Keaveny
,
T. M.
, and
Hayes
,
W. C.
,
1996
, “
The effect of impact direction on the structural capacity of the proximal femur during falls
,”
J. Bone Miner. Res.
,
11
, pp.
377
383
.
7.
Liebschner
,
M. A. K.
,
Rosenberg
,
W. S.
, and
Keaveny
,
T. M.
,
2001
, “
Effects of bone cement volume and distribution on vertebral stiffness after vertebroplasty
,”
Spine
,
26
, pp.
1547
1554
.
8.
Oden
,
Z. M.
,
Selvitelli
,
D. M.
, and
Bouxsein
,
M. L.
,
1999
, “
Effect of local density changes on the failure load of the proximal femur
,”
J. Orthop. Res.
,
17
, pp.
661
667
.
9.
Keaveny
,
T. M.
,
Wachtel
,
E. F.
,
Ford
,
C. M.
, and
Hayes
,
W. C.
,
1994
, “
Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus
,”
J. Biomech.
,
27
, pp.
1137
1146
.
10.
Morgan
,
E. F.
, and
Keaveny
,
T. M.
,
2001
, “
Dependence of yield strain of human trabecular bone on anatomic site
,”
J. Biomech.
,
34
, pp.
569
577
.
11.
Cowin
,
S. C.
,
1986
, “
Fabric dependence of an anisotropic strength criterion
,”
Mech. Mater.
,
5
, pp.
251
260
.
12.
Tsai
,
S.
, and
Wu
,
E.
,
1971
, “
A general theory for strength of anisotropic materials
,”
J. Comp. Mat.
,
5
, pp.
58
80
.
13.
Wu, E., 1974, “Phenomenological anisotropic failure criterion.,” Mechanics of Composite Materials, G. Sendecky, ed., Academic Press, New York, pp. 353–431.
14.
Keaveny
,
T. M.
,
Wachtel
,
E. F.
,
Zadesky
,
S. P.
, and
Arramon
,
Y. P.
,
1999
, “
Application of the Tsai-Wu quadratic multiaxial failure criterion to bovine trabecular bone
,”
J. Biomech. Eng.
,
121
, pp.
99
107
.
15.
Niebur
,
G. L.
,
Feldstein
,
M. J.
, and
Keaveny
,
T. M.
,
2002
, “
Biaxial failure behavior of bovine tibial trabecular bone
,”
J. Biomech. Eng.
,
124
, pp.
699
705
.
16.
Patel, M. R., 1969, “The deformation and fracture of rigid cellular plastics under multiaxial stress,” p. 196. Berkeley, CA: University of California, Berkeley, CA.
17.
Zaslawsky
,
M.
,
1973
, “
Multiaxial-stress studies on rigid polyurethane foam
,”
Exp. Mech.
,
2
, pp.
70
76
.
18.
Gibson
,
L. J.
,
Ashby
,
M. F.
,
Zhang
,
J.
, and
Triantafillou
,
T. C.
,
1989
, “
Failure surfaces for cellular materials under multiaxial loads-I. Modelling
,”
Int. J. Mech. Sci.
,
31
, pp.
635
663
.
19.
Triantafillou
,
T. C.
,
Zhang
,
J.
,
Shercliff
,
T. L.
,
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1989
, “
Failure surfaces for cellular materials under multiaxial loads-II. Comparison of models with experiment
,”
Int. J. Mech. Sci.
,
31
, pp.
665
678
.
20.
Fenech
,
C. M.
, and
Keaveny
,
T. M.
,
1999
, “
A cellular solid criterion for predicting the axial-shear failure properties of trabecular bone.
,”
J. Biomech. Eng.
,
121
, pp.
414
422
.
21.
Bayraktar, H. H., and Keaveny, T. M., 2004, “Mechanisms of uniformity of yield strains for trabecular bone,” J. Biomech., In Press.
22.
Morgan
,
E. F.
,
Bayraktar
,
H. H.
,
Yeh
,
O. C.
, and
Keaveny
,
T. M.
,
2004
, “
Contribution of inter-site variations in architecture to trabecular bone apparent yield strain
,”
J. Biomech.
,
In Press
In Press
.
23.
Guo, X. E., 2001, “Mechanical properties of cortical bone and cancellous tissue,” Bone Mechanics Handbook, S. C. Cowin, ed., CRC Press, Boca Raton, pp. 10.11–10.23.
24.
Bayraktar
,
H. H.
,
Morgan
,
E. F.
,
Niebur
,
G. L.
,
Morris
,
G.
,
Wong
,
E. K.
, and
Keaveny
,
T. M.
,
2004
, “
Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue
,”
J. Biomech.
,
37
, pp.
27
35
.
25.
Beck
,
J. D.
,
Canfield
,
B. L.
,
Haddock
,
S. M.
,
Chen
,
T. J. H.
,
Kothari
,
M.
, and
Keaveny
,
T. M.
,
1997
, “
Three-dimensional imaging of trabecular bone using the computer numerically controlled milling technique
,”
Bone (N.Y.)
,
21
, pp.
281
287
.
26.
Ru¨egsegger
,
P.
,
Koller
,
B.
, and
Mu¨ller
,
R.
,
1996
, “
A microtomographic system for the nondestructive evaluation of bone architecture
,”
Calcif. Tissue Int.
,
58
, pp.
24
29
.
27.
Niebur
,
G. L.
,
Feldstein
,
M. J.
,
Yuen
,
J. C.
,
Chen
,
T. J.
, and
Keaveny
,
T. M.
,
2000
, “
High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone
,”
J. Biomech.
,
33
, pp.
1575
1583
.
28.
Niebur
,
G. L.
,
Yuen
,
J. C.
,
Hsia
,
A. C.
, and
Keaveny
,
T. M.
,
1999
, “
Convergence behavior of high-resolution finite element models of trabecular bone
,”
J. Biomech. Eng.
,
121
, pp.
629
635
.
29.
Van Rietbergen
,
B.
,
Odgaard
,
A.
,
Kabel
,
J.
, and
Huiskes
,
R.
,
1996
, “
Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture
,”
J. Biomech.
,
29
, pp.
1653
1657
.
30.
Barr
,
A. H.
,
1981
, “
Superquadratics and angle-preserving transformations
,”
IEEE Comput. Graphics Appl.
,
1
, pp.
11
23
.
31.
Hildebrand
,
T.
,
Laib
,
A.
,
Mu¨ller
,
R.
,
Dequeker
,
J.
, and
Ru¨egsegger
,
P.
,
1999
, “
Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus
,”
J. Bone Miner. Res.
,
14
, pp.
1167
1174
.
32.
Mu¨ller
,
R.
,
Gerber
,
S. C.
, and
Hayes
,
W. C.
,
1998
, “
Micro-compression: a novel technique for the nondestructive assessment of local bone failure
,”
Technol. Health Care
,
6
, pp.
433
444
.
33.
Sto¨lken
,
J. S.
, and
Kinney
,
J. H.
,
2003
, “
On the importance of geometric nonlinearity in finite-element simulations of trabecular bone failure
,”
Bone (N.Y.)
,
33
, pp.
494
504
.
34.
Stone
,
J. L.
,
Beaupre
,
G. S.
, and
Hayes
,
W. C.
,
1983
, “
Multiaxial strength characteristics of trabecular bone
,”
J. Biomech.
,
16
, pp.
743
752
.
35.
Turner
,
C. H.
,
1989
, “
Yield behavior of bovine cancellous bone
,”
J. Biomech. Eng.
,
111
, pp.
256
260
.
36.
Chang
,
W. C. W.
,
Christensen
,
T. M.
,
Pinilla
,
T. P.
, and
Keaveny
,
T. M.
,
1999
, “
Isotropy of uniaxial yield strains for bovine trabecular bone
,”
J. Orthop. Res.
,
17
, pp.
582
585
.
37.
Simo, J. C., and Hughes, T. J. R., 1998, “Computational Inelasticity,” Springer-Verlag, New York.
38.
Adams
,
M.
,
2002
, “
Evaluation of three unstructured multigrid methods on 3D finite element problems in solid mechanics
,”
Int. J. Numer. Methods Eng.
,
55
, pp.
519
534
.
You do not currently have access to this content.