Clinical studies have identified factors such as the stent design and the deployment technique that are one cause for the success or failure of angioplasty treatments. In addition, the success rate may also depend on the stenosis type. Hence, for a particular stenotic artery, the optimal intervention can only be identified by studying the influence of factors such as stent type, strut thickness, geometry of the stent cell, and stent–artery radial mismatch with the wall. We propose a methodology that allows a set of stent parameters to be varied, with the aim of evaluating the difference in the mechanical environment within the wall before and after angioplasty with stenting. Novel scalar quantities attempt to characterize the wall changes in form of the contact pressure caused by the stent struts, and the stresses within the individual components of the wall caused by the stent. These quantities are derived numerically and serve as indicators, which allow the determination of the correct size and type of the stent for each individual stenosis. In addition, the luminal change due to angioplasty may be computed as well. The methodology is demonstrated by using a full three-dimensional geometrical model of a postmortem specimen of a human iliac artery with a stenosis using imaging data. To describe the material behavior of the artery, we considered mechanical data of eight different vascular tissues, which formed the stenosis. The constitutive models for the tissue components capture the typical anisotropic, nonlinear and dissipative characteristics under supra-physiological loading conditions. Three-dimensional stent models were parametrized in such a way as to enable new designs to be generated simply with regard to variations in their geometric structure. For the three-dimensional stent–artery interaction we use a contact algorithm based on smooth contact surfaces of at least -continuity, which prevents numerical problems known from standard facet-based contact algorithm. The proposed methodology has the potential to provide a scientific basis for optimizing treatment procedures and stent geometries and materials, to help stent designers examine new stent designs “virtually,” and to assist clinicians in choosing the most suitable stent for a particular stenosis.
Skip Nav Destination
Article navigation
February 2005
Technical Papers
Changes in the Mechanical Environment of Stenotic Arteries During Interaction With Stents: Computational Assessment of Parametric Stent Designs
Gerhard A. Holzapfel, ASME Member,
Gerhard A. Holzapfel, ASME Member
Institute for Structural Analysis, Computational Biomechanics, Graz University of Technology, 8010 Graz, Schiesstattgasse 14-B, Austria
11
Search for other works by this author on:
Michael Stadler,
Michael Stadler
Institute for Structural Analysis, Computational Biomechanics, Graz University of Technology, 8010 Graz, Schiesstattgasse 14-B, Austria
Search for other works by this author on:
Thomas C. Gasser
Thomas C. Gasser
Institute for Structural Analysis, Computational Biomechanics, Graz University of Technology, 8010 Graz, Schiesstattgasse 14-B, Austria
Search for other works by this author on:
Gerhard A. Holzapfel, ASME Member
11
Institute for Structural Analysis, Computational Biomechanics, Graz University of Technology, 8010 Graz, Schiesstattgasse 14-B, Austria
Michael Stadler
Institute for Structural Analysis, Computational Biomechanics, Graz University of Technology, 8010 Graz, Schiesstattgasse 14-B, Austria
Thomas C. Gasser
Institute for Structural Analysis, Computational Biomechanics, Graz University of Technology, 8010 Graz, Schiesstattgasse 14-B, Austria
Contributed by the Bioengineering Division for publication in the JOURNAL OF BIOMECHANICAL ENGINEERING. Manuscript received by the Bioengineering Division January 7, 2004; revision received September 9, 2004. Associate Editor: Jay D. Humphrey.
J Biomech Eng. Feb 2005, 127(1): 166-180 (15 pages)
Published Online: March 8, 2005
Article history
Received:
January 7, 2004
Revised:
September 9, 2004
Online:
March 8, 2005
Citation
Holzapfel, G. A., Stadler , M., and Gasser, T. C. (March 8, 2005). "Changes in the Mechanical Environment of Stenotic Arteries During Interaction With Stents: Computational Assessment of Parametric Stent Designs ." ASME. J Biomech Eng. February 2005; 127(1): 166–180. https://doi.org/10.1115/1.1835362
Download citation file:
Get Email Alerts
Related Articles
Numerical Study of Shear-Induced Thrombus Formation Over Aterial Stent Struts
J. Med. Devices (June,2009)
Deployment of Interwoven Stents in an Artery With Moderate Stenosis
J. Med. Devices (June,2011)
The Effect of Stent Design on the Restenosis Rate
J. Med. Devices (June,2008)
A Wireless, Passive Sensor for Monitoring the Pressure of an Abdominal Aortic Aneurysm Sac
J. Med. Devices (June,2008)
Related Proceedings Papers
Related Chapters
mDFA Human Empirical Results
Modified Detrended Fluctuation Analysis (mDFA)
Occlusion Identification and Relief within Branched Structures
Biomedical Applications of Vibration and Acoustics in Therapy, Bioeffect and Modeling
Basic Principles and Current Treatments
Medical Devices for Respiratory Dysfunction: Principles and Modeling of Continuous Positive Airway Pressure (CPAP)