The cavitation inception threshold of mechanical heart valves has been shown to be highly variable. This is in part due to the random distribution of the initial and final conditions that characterize leaflet closure. While numerous hypotheses exist explaining the mechanisms of inception, no consistent scaling laws have been developed to describe this phenomenon due to the complex nature of these dynamic conditions. Thus in order to isolate and assess the impact of these varied conditions and mechanisms on inception, a system of ordinary differential equations is developed to describe each system component and solved numerically to predict the minimum pressure generated during valve closure. In addition, an experiment was conducted in a mock circulatory loop using an optically transparent size 29 bileaflet valve over a range of conditions to calibrate and validate this model under physiological conditions. High-speed video and high-response pressure measurements were obtained simultaneously to characterize the relationship between the valve motion, fluid motion, and negative pressure transients during closure. The simulation model was calibrated using data from a single closure cycle and then compared to other experimental flow conditions and to results found in the literature. The simulation showed good agreement with the closing dynamics and with the minimum pressure trends in the current experiment. Additionally, the simulation suggests that the variability observed experimentally (when using alone as the primary measure of cavitation inception) is predictable. Overall, results from the current form of this lumped parameter model indicate that it is a good engineering assessment tool.
Skip Nav Destination
Article navigation
August 2005
Technical Papers
Lumped Parameter Model for Computing the Minimum Pressure During Mechanical Heart Valve Closure
Brant H. Maines,
Brant H. Maines
CarboMedics,
A Sorin Group Company
, Austin, Texas 78752
Search for other works by this author on:
Christopher E. Brennen
Christopher E. Brennen
California Institute of Technology
, Pasadena, California 91125
Search for other works by this author on:
Brant H. Maines
CarboMedics,
A Sorin Group Company
, Austin, Texas 78752
Christopher E. Brennen
California Institute of Technology
, Pasadena, California 91125J Biomech Eng. Aug 2005, 127(4): 648-655 (8 pages)
Published Online: March 9, 2005
Article history
Received:
May 24, 2004
Revised:
March 9, 2005
Citation
Maines, B. H., and Brennen, C. E. (March 9, 2005). "Lumped Parameter Model for Computing the Minimum Pressure During Mechanical Heart Valve Closure." ASME. J Biomech Eng. August 2005; 127(4): 648–655. https://doi.org/10.1115/1.1934164
Download citation file:
Get Email Alerts
Analysis of Transient Cutting Forces in Cortical Bone During Ultrasonically Assisted Cutting
J Biomech Eng (June 2025)
Related Articles
The Osmotic Swelling Characteristics of Cardiac Valve Prostheses
J Biomech Eng (August,2000)
Modifying a Tilting Disk Mechanical Heart Valve Design to Improve Closing Dynamics
J Biomech Eng (October,2008)
Vortex Shedding as a Mechanism for Free Emboli Formation in Mechanical Heart Valves
J Biomech Eng (April,2000)
Wavelet Transforms in the Analysis of Mechanical Heart Valve Cavitation
J Biomech Eng (April,2006)
Related Proceedings Papers
Related Chapters
Experimental Characterization of a Cavitating Orifice
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Antilock-Braking System Using Fuzzy Logic
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Introduction
Mechanical Blood Trauma in Circulatory-Assist Devices