The cavitation inception threshold of mechanical heart valves has been shown to be highly variable. This is in part due to the random distribution of the initial and final conditions that characterize leaflet closure. While numerous hypotheses exist explaining the mechanisms of inception, no consistent scaling laws have been developed to describe this phenomenon due to the complex nature of these dynamic conditions. Thus in order to isolate and assess the impact of these varied conditions and mechanisms on inception, a system of ordinary differential equations is developed to describe each system component and solved numerically to predict the minimum pressure generated during valve closure. In addition, an experiment was conducted in a mock circulatory loop using an optically transparent size 29 bileaflet valve over a range of conditions to calibrate and validate this model under physiological conditions. High-speed video and high-response pressure measurements were obtained simultaneously to characterize the relationship between the valve motion, fluid motion, and negative pressure transients during closure. The simulation model was calibrated using data from a single closure cycle and then compared to other experimental flow conditions and to results found in the literature. The simulation showed good agreement with the closing dynamics and with the minimum pressure trends in the current experiment. Additionally, the simulation suggests that the variability observed experimentally (when using dPdt alone as the primary measure of cavitation inception) is predictable. Overall, results from the current form of this lumped parameter model indicate that it is a good engineering assessment tool.

1.
Klepetko
,
W.
,
Moritz
,
A.
,
Mlczoch
,
J.
,
Schurawitzki
,
H.
,
Domanig
,
E.
, and
Wolner
,
E.
, 1989, “
Leaflet Fracture in Edward-Duromedics Bileaflet Valves
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
97
, pp.
90
94
.
2.
Leuer
,
J. H.
, 1987, “
Dynamics of Mechanical Valves in the Artificial Heart
,”
40th ACEMB
,
Niagara Falls
, NY, September 10–12, p.
3
.
3.
Stinebring
,
D. R.
,
Lamson
,
T. C.
, and
Deutsch
,
S.
, 1991, “
Techniques for In Vitro Observation of Cavitation in Prosthetic Heart Valves
,”
ASME Cavitation and Multiphase Flow Forum
,
Portland
, Oregon, pp.
119
124
.
4.
Graf
,
T.
,
Fischer
,
H.
,
Reul
,
H.
, and
Rau
,
G.
, 1991, “
Cavitation Potential of Mechanical Heart Valve Prostheses
,”
Int. J. Artif. Organs
0391-3988,
14
, pp.
169
174
.
5.
Wu
,
J
,
Wang
,
Y.
, and
Hwang
,
N. H. C.
, 1994, “
Occluder Closing Behavior: A Key Factor in Mechanical Heart Valve Cavitation
,”
J. Heart Valve Dis.
0966-8519,
3
(Suppl. I), pp.
S25
S34
.
6.
Bluestein
,
D.
,
Einav
,
S.
, and
Hwang
,
N. H. C
, 1994, “
A Squeeze Flow Phenomenon at the Closing of a Bileaflet Mechanical Heart Valve Prosthesis
,”
J. Biomech.
0021-9290,
27
(
11
), pp.
1369
1378
.
7.
Makhijani
,
V. B.
,
Siegel
,
J. M.
, and
Hwang
,
N. H. C
, 1996, “
Numerical Study of Squeeze-Flow in Tilting Disc Mechanical Heart Valves
,”
J. Heart Valve Dis.
0966-8519,
5
, pp.
97
103
.
8.
Lee
,
C. S.
,
Chandran
,
K. B.
, and
Chen
,
L. D.
, 1994, “
Cavitation Dynamics of Mechanical Heart Valve Prostheses
,”
Int. J. Artif. Organs
0391-3988,
18
(
10
), pp.
758
767
.
9.
Guyton
,
A. C.
, 1981,
Textbook of Medical Physiology
, 6th ed.,
W. B. Saunders Company
, Philadelphia.
10.
Guo
,
G. X.
,
Xu
,
C. C.
, and
Hwang
,
N. H. C.
, 1990, “
Laser Assessment of Leaflet Closing Motion in Prosthetic Heart Valves
,”
ASME J. Biomech. Eng.
0148-0731,
12
, pp.
477
481
.
11.
Guo
,
G. X.
,
Xu
,
C. C.
, and
Hwang
,
N. H. C.
, 1990, “
The Closing Velocity of Baxter Duromedic Heart Valve Prostheses
,”
ASAIO Trans.
0889-7190,
36
, pp.
M529
M532
.
12.
Bluestein
,
D.
,
Menon
,
S.
,
Wu
,
Z.
,
Haubold
,
A.
,
Armitage
,
T.
, and
Hwang
,
N.
, 1993, “
Closing Behavior of a New Bileaflet Mechanical Heart Valve
,”
ASAIO J.
0162-1432,
39
, pp.
M398
M402
.
13.
Wu
,
J.
, and
Hwang
,
N. H. C.
, 1995, “
Ventricular Pressure Slope and Bileaflet Mechanical Heart Valve Closure
,”
ASAIO J.
0162-1432,
41
, pp.
M763
M767
.
14.
Richard
,
G.
, 1992, “
Cavitation in Bi-Leaflet Valves
,” Carbomedics Report, TR–0086–1.
15.
Carey
,
R. F.
,
Porter
,
J. M.
,
Richard
,
G.
,
Luck
,
C.
,
Shu
,
M. C. S.
,
Gou
,
G. X.
,
Elizondo
,
D. R.
,
Kingsbury
,
C.
,
Anderson
,
S.
, and
Herman
,
B. A.
, 1995, “
An Interlaboratory Comparison of the FDA Protocol for the Evaluation of Cavitation Potential of Mechanical Heart Valves
,”
J. Heart Valve Dis.
0966-8519,
4
, pp.
532
541
.
16.
Replacement Heart Valve Guidance; Draft Document
, 1994, U.S. Department of Health and Human Services, Office of Device Evaluation, October.
17.
Chandran
,
K. B.
, and
Aluri
,
S.
, 1997, “
Mechanical Valve Closing Dynamics: Relationship Between Velocity of Closing, Pressure Transients and Cavitation Initiation
,”
Ann. Biomed. Eng.
0090-6964,
25
, pp.
926
938
.
18.
Rau
,
G.
, and
Reul
,
H.
, 1998, “
In Vitro Cavitation Analysis of Sulzer Carbomedics Bileaflet Mechanic Heart Valve Prostheses According to FDA-Draft Replacement Heart Valve Guidance, Version 4.1 Appendix H
,” Carbomedics Internal Report.
19.
Zapanta
,
C. M.
, 1999, “
Determination of Appropriate Test Variables to Evaluate the Cavitation Potential of Prosthetic Heart Valves
,” Carbomedics Draft Report TR–1912.
20.
Cheon
,
G.
, and
Chandran
,
K. B.
, 1994, “
Transient Behavior Analysis of a Mechanical Monoleaflet Heart Valve Prosthesis in the Closing Phase
,”
ASME J. Biomech. Eng.
0148-0731,
116
, pp.
452
458
.
21.
Meyers
,
M. R.
, and
Porter
,
J. M.
, 2003, “
Impulsive Motion Model for Computing the Closing Motion of Mechanical Heart Valve Leaflets
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
1031
1039
.
22.
Wylie
,
E. B.
, and
Streeter
,
V. L.
, 1993,
Fluid Transients in Systems
,
Prentice Hall
, Upper Saddle River, NJ.
23.
Brennen
,
C. E.
, 1994,
Hydrodynamics of Pumps
,
Concepts ETI, Norwich Vermont and Oxford University Press
, New York.
24.
Ellis
,
J.
, and
Mualla
,
W.
, 1986, “
Numerical Modeling of Reflux Valve Closure
,”
ASME J. Pressure Vessel Technol.
0094-9930,
108
, pp.
92
97
.
25.
Arastu
,
A. H.
, and
Husaini
,
S. M.
, 1995, “
A Comprehensive Check Valve Dynamics Model for Water
,”
Proc. ASEM Fluids Eng. Div.
, FED-Vol
234
, IMECE.
26.
Maines
,
B. H.
, and
Brennen
,
C. E.
, 2001, “
Applicability of Fluid Transient Test Methods for Mechanical Heart Valve Cavitation Scaling
,”
Sixth Annual Hilton Head Workshop sponsored by the Parker Institute for Bioengineering and Bioscience. Prosthetic Heart Valves: Past Present and Future
.
27.
Rambod
,
E.
,
Beizaie
,
M.
,
Shusser
,
M.
,
Milo
,
S.
, and
Gharib
,
M.
, 1999, “
A Physical Model Describing the Mechanism for Formation of Gas Microbubbles in Patients with Mitral Mechanical Heart Valves
,”
Ann. Biomed. Eng.
0090-6964,
27
, pp.
774
792
.
28.
Kini
,
V.
,
Bachmann
,
C.
,
Fontaine
,
A.
,
Deutsch
,
S.
, and
Tarbell
,
J. M.
, 2000, “
Flow Visualization in Mechanical Heart Valves: Occluder Rebound and Cavitation Potential
,”
Ann. Biomed. Eng.
0090-6964,
28
(
4
), pp.
431
441
.
29.
Manning
,
K. B.
,
Kini
,
V.
,
Fontaine
,
A. A.
,
Deutsch
,
S.
, and
Tarbell
,
J. M.
, 2003, “
Regurgitant Flow Field Characteristics of the St. Jude Bileaflet Mechanical Heart Valve under Physiologic Pulsatile Flow using Particle Image Velocimetry
,”
Artif. Organs
0160-564X,
27
(
9
), pp.
840
846
.
30.
Avrahami
,
I.
,
Rosenfeld
,
M.
,
Einav
,
S.
,
Eichler
,
M.
, and
Reul
,
H.
, 2000, “
Can Vortices in the Flow Across Mechanical Heart Valves Contribute to Cavitation?
Med. Biol. Eng. Comput.
0140-0118,
38
, pp.
93
97
.
31.
Johansen
,
P.
,
Manning
,
K. B.
,
Tarbell
,
J. M.
,
Fontaine
,
A. A.
,
Deutsch
,
S.
, and
Nygaard
,
H.
, 2003, “
A New Method for Evaluation of Cavitation Near Mechanical Heart Valves
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
663
670
.
32.
Wu
,
J.
,
Gao
,
B. Z.
, and
Hwang
,
N. H. C.
, 1995, “
Transient Pressure at Closing of a Monoleaflet Mechanical Heart Valve Prosthesis: Mounting Compliance Effect
,”
J. Heart Valve Dis.
0966-8519,
4
, pp.
553
567
.
33.
Lai
,
G. Y.
, and
Chandran
,
K. B.
, 2001, “
Simulation of Mechanical Heart Valve Closure Dynamics: Present Status and Future Directions
,”
Sixth Annual Hilton Head Workshop sponsored by the Parker Institute for Bioengineering and Bioscience. Prosthetic Heart Valves: Past Present and Future
.
34.
Chandran
,
K. B.
, 1997, “
Measurement of Velocity of the Occluder at Valve Closure
,” Carbomedics Inc. Internal Report.
You do not currently have access to this content.