This paper presents the algorithm and technical aspects of an intelligent diagnostic system for the detection of heart murmurs. The purpose of this research is to address the lack of effectively accurate cardiac auscultation present at the primary care physician office by development of an algorithm capable of operating within the hectic environment of the primary care office. The proposed algorithm consists of three main stages. First; denoising of input data (digital recordings of heart sounds), via Wavelet Packet Analysis. Second; input vector preparation through the use of Principal Component Analysis and block processing. Third; classification of the heart sound using an Artificial Neural Network. Initial testing revealed the intelligent diagnostic system can differentiate between normal healthy heart sounds and abnormal heart sounds (e.g., murmurs), with a specificity of 70.5% and a sensitivity of 64.7%.

1.
American Heart Association
, 2005, “
Heart Disease and Stroke Statistics—2005 Update
,” American Heart Association, Dallas, TX. http://www.amhrt.org/presenter.jhtml?identifier=3000090http://www.amhrt.org/presenter.jhtml?identifier=3000090
2.
Pearson
T. A.
, et al.
, 2002, “
AHA Guidelines for Primary Prevention of Cardiovascular Disease and Stroke: 2002 Update
,”
Circulation
0009-7322,
106
, pp.
388
391
.
3.
Bonow
,
R. O.
, et al.
, 1998, “
ACC/AHA Task Force Report
,”
J. Am. Coll. Cardiol.
0735-1097,
32
(
5
), pp.
1486
1588
.
4.
Mangione
,
S.
, and
Nieman
,
L. Z.
, 1997, “
Cardiac Auscultatory Skills of Internal Medicine and Family Practice Trainee
,”
J. Am. Med. Assoc.
0098-7484,
278
, pp.
717
722
.
5.
Lembo
,
N. J.
,
Dell’Italia
,
L. J.
,
Crawford
,
M. H.
,
O’Rourke
,
R. A.
, 1988, “
Bedside Diagnosis of Systolic Murmurs
,”
N. Engl. J. Med.
0028-4793,
318
(
24
), pp.
1572
1578
.
6.
Roldan
,
C. A.
,
Shively
,
B. K.
, and
Crawford
,
M. H.
, 1996, “
Value of the Cardiovascular Physical Examination for Detecting Valvular Heart Disease in Asymptomatic Subjects
,”
Am. J. Cardiol.
0002-9149,
77
(
15
), pp.
1327
1331
.
7.
Braunwald
,
E.
, 2001,
Heart Disease: A Textbook of Cardiovascular Medicine
, 6th ed., edited by
E.
Braunwald
et al.,
W. B.
Saunders
, Philadelphia, PI.
8.
Etchells
,
E.
,
Bell
,
C.
, and
Robb
,
K.
, 1997, “
Does this Patient have an Abnormal Systolic Murmur?
J. Am. Med. Assoc.
0098-7484,
277
, pp.
564
571
.
9.
Shub
,
C.
, 2003, “
Echocardiography or Auscultation? How to Evaluate Systolic Murmurs
,”
Can. Fam. Physician
0008-350X,
49
, pp.
163
167
.
10.
Bhatikar
,
S. R.
,
Mahajan
,
R. L.
, and
DeGroff
,
C. G.
, 2002, “
A Novel Paradigm for Telemedicine Using the Personal Bio-Monitor
,”
39th Annual Rocky Mountain Bioengineering Symposium, Biomedical Sciences Instrumentation
,
The Instrumentation, Systems, and Automation Society (ISA)
, Copper Mountain, CO,
38
, pp.
59
70
.
11.
Fritzson
,
P.
,
Reed
,
N. E.
, and
Reed
,
T. R.
, 2001, “
The Analysis of Heart Sounds for Symptom Detection and Machine-Aided Diagnosis
,”
Proceedings of EUROSIM 2001
,
Delft
, The Netherlands, pp.
38
45
.
12.
Zervakis
,
M. E.
,
Kwon
,
T. M.
, and
Yang
,
J. S.
, 1995, “
Multiresolution Image Restoration in the Wavelet Domain
,”
IEEE Trans. Circuits Syst., II: Analog Digital Signal Process.
1057-7130,
42
(
9
), pp.
578
591
.
13.
Sava
,
H. P.
, and
McDonnell
,
J. T. E.
, 1996, “
Spectral Composition of Heart Sounds Before and After Mechanical Heart Valve Implantation Using a MBFBM Method
,”
IEEE Trans. Biomed. Eng.
0018-9294,
43
(
7
), pp.
734
742
.
14.
Durand
,
L. G.
,
Guo
,
Z.
,
Sabbah
,
H. N.
, and
Stein
,
P. D.
, 1993, “
Comparison of Spectral Techniques for Computer-Assisted Classification of Spectra of Heart Sounds in Patients with Porcine Bioprosthetic Valves
,”
Med. Biol. Eng. Comput.
0140-0118,
31
(
3
), pp.
229
236
.
15.
DeGroff
,
C. G.
,
Bhatikar
,
S.
,
Hertzberg
,
J.
,
Shandas
,
R.
,
Valdes-Cruz
,
L.
, and
Mahajan
,
R. L.
, 2001, “
Artificial Neural Network-Based Method of Screening Heart Murmurs in Children
,”
Circulation
0009-7322,
103
(
22
), pp.
2711
2716
.
16.
Digital.WAV Recordings of Heart Sounds
, Synapse Publishing Inc. Heart Sound Database. Retrieved 2004 from: http://www.medlib.com/spi/coolstuff2.htmhttp://www.medlib.com/spi/coolstuff2.htm
17.
Digital.WAV Recording of Heart Sounds
, 2000, “
The Cardiac Exam: Auscultation
”, Case Western Reserve University, Retrieved 2004 from: http://home.cwru.edu/~dck3/heart/listen.html#Heart%20Soundshttp://home.cwru.edu/~dck3/heart/listen.html#Heart%20Sounds
18.
Liang
,
H.
,
Lukkarinen
,
S.
, and
Hartimo
,
I.
, 1997, “
Heart Sound Segmentation Algorithm Based on Heart Sound Envelogram
,”
Comput. Cardiol.
0276-6574 pp.
105
108
.
19.
Oskiper
,
T.
, and
Watrous
,
R.
, 2002, “
Results on the Time-Frequency Characterization of the First Heart Sound in Normal Man
,”
Proceedings of the Second Joint EMBS/BMES Conference
,
1
, pp.
126
127
.
20.
Abdel-Alim
,
O.
,
Hamdy
,
N.
, and
El-Hanjouri
,
M. A.
, 2002, “
Heart Diseases Diagnosis Using Heart Sounds
,”
Proceedings of the Nineteenth National Radio Science Conference, (NRSC)
, pp.
634
640
.
21.
Graps
,
A. L
, 1995, “
An Introduction to Wavelets
,”
IEEE Comput. Sci. Eng.
1070-9924,
2
(
2
), pp.
50
61
.
22.
Gonzalez
,
R. C.
, and
Woods
,
R. E.
, 2002,
Digital Image Processing
, 2nd ed.,
Prentice Hall
.
23.
Huiying
,
L.
,
Sakari
,
L.
, and
Iiro
,
H.
, 1997, “
A Heart Sound Segmentation Algorithm Using Wavelet Decomposition and Reconstruction
,”
Proceedings of the 19th Annual International Conference of the IEEE/EMBS
,
4
(
30
), pp.
1630
1633
.
24.
Turkoglu
,
I
, and
Arslan
,
A.
, 2001, “
An Intelligent Pattern Recognition System Based on Neural Network and Wavelet Decomposition for Interpretation of Heart Sounds
,”
Proceedings of the 23rd Annual International Conference of the IEEE and Engineering in Medicine and Biology Society
,
2
, pp.
1747
1750
.
25.
Hudson
,
D. L.
, and
Cohen
,
M. E.
, 2000,
Neural Networks and Artificial Intelligence for Biomedical Engineering
,
Wiley-IEEE Press
, Indianapolis, IN.
26.
Belge
,
M.
,
Kilmer
,
M. E.
, and
Miller
,
E. L.
, 2000, “
Wavelet Domain Image Restoration with Adaptive Edge-Preserving Regularity
,”
IEEE Trans. Image Process.
1057-7149,
9
(
4
), pp.
597
608
.
27.
Polikar
,
R.
, 2003, “
The Wavelet Tutorial
,”
Science Magazine–NetWatch
,
300
(
5621
), pp.
873
. http://users.rowan.edu/~polikar/WAVELETS/WTtutorial.htmlhttp://users.rowan.edu/~polikar/WAVELETS/WTtutorial.html
28.
Lin
,
S.
,
Rohde
,
G. K.
, and
Aldroubi
,
A.
, 1998, “
Wavelet Denoising of Epicardial Fluorescence Imaging
,”
Proceedings of SPIE Symposium on Wavelet Applications in Signal and Imaging Processing IV
,
A. F.
Laine
,
M. A.
Unser
,
A.
Aldroubi
, eds.,
3458
, pp.
267
273
.
29.
Jain
,
A. K.
,
Duin
,
R. P. W.
, and
Mao
,
J.
, 2000, “
Statistical Pattern Recognition: A Review
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
2
, pp.
4
37
.
30.
Stasis
,
A. C.
,
Loukis
,
E. N.
,
Pavlopoulos
,
S. A.
, and
Koutsouris
,
D.
, 2003, “
Using Decision Tree Algorithms as a Basis for a Heart Sound Diagnosis Decision Support System
,”
4th International IEEE EMBS Special Topic Conference on Information Technology Applications in Biomedicine
,
IEEE Press
, pp.
354
357
.
31.
Akay
,
M.
, 2000,
Nonlinear Biomedical Signal Processing
,
1
,
Wiley-IEEE Press
, New York, NY.
32.
Oskiper
,
T.
, and
Watrous
,
R.
, 2002, “
Detection of the First Heart Sound Using a Time-Delay Neural Network
,”
Comput. Cardiol.
0276-6574,
29
, pp.
537
540
.
33.
Jang
,
J. S. R.
,
Sun
,
C. T.
, and
Mizutani
,
E.
, 1997,
Neuro-Fuzzy and Soft Computing
,
Prentice Hall
.
34.
The MathWorks, Inc.
, 2004, “
Documentation for MathWorks Products, Release 14
,” http://www.mathworks.com/access/helpdesk/help/helpdesk.htmlhttp://www.mathworks.com/access/helpdesk/help/helpdesk.html, Natick, MA.
You do not currently have access to this content.