This paper presents the design and prototyping of an inherently compliant lightweight hand mechanism. The hand mechanism itself has 15 degrees of freedom and five fingers. Although the degrees of freedom in each finger are coupled, reducing the number of independent degrees of freedom to 5, the 15 degrees of freedom of the hand could potentially be individually actuated. Each joint consists of a novel flexing mechanism that is based on the loading of a compression spring in the axial and transverse direction via a cable and conduit system. Currently, a bench top version of the prototype is being developed; the three joints of each finger are coupled together to simplify the control system. The current control scheme under investigation simulates a control scheme where myoelectric signals in the wrist flexor and extensor muscles are converted in to x and y coordinates on a control scheme chart. Static load-deformation analysis of finger segments is studied based on a 3-dimensional model without taking the stiffener into account, and the experiment validates the simulation.

1.
Atkins
,
D.
,
Heard
,
D.
, and
Donovan
,
W.
, 1996, “
Epidemiologic Overview of Individuals with Upper Limb Loss and Their Reported Research Priorities
,”
Journal of Prosthetics and Orthotics
, Vol.
8
, No.
1
,
2
11
.
2.
Schulz
,
C.
,
Pylatiuk
,
G.
, and
Bretthauer
,
A.
, 2001, “
A New Ultralight Anthropomorphic Hand
,”
IEEE Conference on Robotics and Automation
, pp.
2437
2441
.
3.
Massa
,
B.
,
Roccella
,
S.
,
Carrozza
,
M. C.
, and
Dario
,
P.
, 2002, “
Design and Development of an Underactuated Prosthetic Hand
,”
Proceeding of the 2002 IEEE International Conference on Robotics & Automation
, Washington, DC.
4.
Hirose
,
S.
,
Kado
,
T.
, and
Umetani
,
Y.
, 1983, “
Tensor Actuated Elastic Manipulator
,”
Proceedings of the 6th IFToMM World Congress
, New Delhi, Vol.
2
, pp.
978
981
.
5.
Kyberd
,
P.
,
Chappell
,
P.
, and
Gow
,
D.
, 2003, “
Advances in the Control of Prosthetic Arms
,”
Technology & Disability
;
15
(
2
), pp.
57
61
.
6.
Butterfass
,
J.
,
Hirzinger
,
G.
,
Knoch
,
S.
and
Liu
,
H.
, 1998, “
DLR’s Multisensory Articulated Hand. Part I: Hard- and Software Architecture
,”
Proceedings of the 1998 IEEE International Conference on Robotics & Automation
,
Leuven
, Belgium.
7.
Kyberd
,
P.
and
Chappell
,
P.
, (1994), “
The Southampton Hand: An Intelligent Myoelectric Prosthesis
,”
J. Rehabil. R. D
0742-3241, Vol.
31
, Issue
4
,
326
334
.
8.
Kyberd
P.
,
Light
,
C.
,
Chappell
,
P.
,
Nightingale
,
J.
,
Whatley
,
D.
, and
Evans
,
M.
, 2001, “
The Design of Anthropomorphic Prosthetic Hands: A Study of the Southampton Hand
,”
Robotica
0263-5747,
19
, pp.
593
600
.
9.
Tura
,
A.
,
Lamberti
,
C.
,
Davalli
,
A.
, and
Sacchetti
,
R.
, 1998, “
Experimental Development of a Sensory Control System for an Upper Limb Myoelectric Prosthesis with Cosmetic Covering
,”
J. Rehabil. R. D
0742-3241,
35
(
1
), pp.
14
26
.
10.
Carrozza
,
M. C.
,
Dario
,
P.
,
Vecchi
,
F.
,
Roccella
,
S.
,
Zecca
,
M.
, and
Sebastiani
,
F.
, 2003, “
The CyberHand: On the Design of a Cybernetic Prosthetic Hand Intended To Be Interfaced To the Peripheral Nervous System
,”
Proceedings, 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems
.
11.
Zecca
,
M.
,
Cappiello
,
G.
,
Sebastiani
,
F.
,
Roccella
,
S.
,
Vecchi
,
F.
,
Carrozza
,
M. C.
, and
Dario
,
P.
, 2003 “
Experimental Analysis of the Proprioceptive and Exteroceptive Sensors of an Underactuated Prosthetic Hand
,”
Proceeding of the ICORR 2003 (The Eighth International Conference on Rehabilitation Robotics)
.
12.
Carrozza
,
M. C.
,
Suppo
,
C.
,
Sebastiani
,
F.
,
Massa
,
B.
,
Vecchi
,
F.
,
Lazzarini
,
R.
,
Cutkosky
,
M. R.
, and
Dario
,
P.
, 2004, “
The SPRING Hand: Development of a Self-Adaptive Prosthesis for Restoring Natural Grasping
,”
Auton. Rob.
0929-5593,
16
(
2
), pp.
125
141
.
13.
Pons
,
J. L.
,
Rocon
,
E.
,
Ceres
,
R.
,
Reynaerts
,
D.
,
Saro
,
B.
,
Levin
,
S.
, and
Van Moorleghem
,
W.
, 2004, “
The MANUS-HAND Dextrous Robotics Upper Limb Prosthesis: Mechanical and Manipulation Aspects
,”
Auton. Rob.
0929-5593,
16
(
2
), pp.
143
163
.
14.
Yang
,
J.
,
Abdel-Malek
,
K.
, and
Potratz
,
J.
, 2005, “
Design and Prototyping of an Active Hand Prosthetic Device
,”
Ind. Robot
0143-991X,
32
(
1
), pp.
71
78
.
15.
Peña Pitarch
,
E.
,
Yang
,
J.
, and
Abdel-Malek
,
K.
, 2003, “
Santos™ Hand: A 25-Degree-of-Freedom Model
,”
Proceedings of SAE Digital Human Modeling for Design and Engineering
, 14–16 June, 2005, Iowa City, IA.
16.
Lindkvist
,
L.
, 1995,
Three-Dimensional Load-Deformation Relationships of Arbitrarily Loaded Coiled Springs
,
Chalmers University of Technology
, Goteborg, Sweden.
17.
Knutson
,
J.
,
Hoyen
,
H.
,
Kilgore
,
K.
, and
Peckham
P.
, 2004, “
Simulated Neuroprosthesis State Activation and Hand-Position Control Using Myoelectric Signals from Wrist Muscles
,”
J. Rehabil. R. D
0742-3241,
41
(
3B
), pp.
461
472
.
18.
Savescu
,
A.
,
Cheze
,
L.
,
Wang
,
X.
,
Beurier
,
G.
, and
Verriest
,
J.
, 2004, “
A 25 Degrees of Freedom Hand Geometrical Model for Better Hand Attitude Simulation
,”
Proceedings of the Digital Human Modeling for Design and Engineering Symposium
, Rochester, MI.
19.
Yang
,
J.
,
Peña Pitarch
,
E.
,
Abdel-Malek
,
K.
,
Patrick
,
A.
, and
Lindkvist
,
L.
, 2004, “
A Multi-Finger Hand Prosthesis
,”
Mech. Mach. Theory
0094-114X,
39
(
6
), pp.
555
581
.
You do not currently have access to this content.