Cavitation is known to cause blood element damage and may introduce gaseous emboli into the cerebral circulation, increasing the patient’s risk of stroke. Discovering methods to reduce the intensity of cavitation induced by mechanical heart valves (MHVs) has long been an area of interest. A novel approach for analyzing MHV cavitation is presented. A wavelet denoising method is explored because currently used analytical techniques fail to suitably unmask the cavitation signal from other valve closing sounds and noise detected with a hydrophone. Wavelet functions are used to denoise the cavitation signal during MHV closure and rebound. The wavelet technique is applied to the signal produced by closure of a 29-mm Medtronic-Hall MHV in degassed water with a gas content of 5ppm. Valve closing dynamics are investigated under loading conditions of 500, 2500, and 4500mmHgs. The results display a marked improvement in the quantity and quality of information that can be extracted from acoustic cavitation signals using the wavelet technique compared to conventional analytical techniques. Time and frequency data indicate the likelihood and characteristics of cavitation formation under specified conditions. Using this wavelet technique we observe an improved signal-to-noise ratio, an enhanced time-dependent aspect, and the potential to minimize valve closing sounds, which disguise individual cavitation events. The overall goal of this work is to eventually link specific valves with characteristic waveforms or distinct types of cavitation, thus promoting improved valve designs.

1.
Yoganathan
,
A. P.
, 2000, “
Cardiac Valve Prostheses
,”
The Biomedical Engineering Handbook
,
J.
Bronzino
, ed.,
CRC Press
,
Boca Raton
, pp.
1847
1870
.
2.
Paulsen
,
P. K.
,
Jensen
,
B. K.
,
Hasenkam
,
J. M.
, and
Nygaard
,
H.
, 1999, “
High-Frequency Pressure Fluctuations Measured in Heart Valve Patients
,”
J. Heart Valve Dis.
0966-8519,
8
, pp.
482
486
.
3.
Lamson
,
T. C.
,
Rosenberg
,
G.
,
Geselowitz
,
D. B.
,
Deutsch
,
S.
,
Stinebring
,
D. R.
,
Frangos
,
J. A.
, and
Tarbell
,
J. M.
, 1993, “
Relative Blood Damage in the Three Phases of a Prosthetic Heart Valve Flow Cycle
,”
ASAIO J.
1058-2916,
39
, pp.
M626
M633
.
4.
Kafesjian
,
R.
,
Howanec
,
M.
,
Ward
,
G. D.
,
Diep
,
L.
,
Wagstaff
,
L. S.
, and
Rhee
,
R.
, 1994, “
Cavitation Damage of Pyrolytic Carbon in Mechanical Heart Valves
,”
J. Heart Valve Dis.
0966-8519,
3
, pp.
52
57
.
5.
Dauzat
,
M.
,
Deklunder
,
G.
,
Aldis
,
A.
,
Rabinovitch
,
M.
,
Burte
,
F.
, and
Bret
,
P. M.
, 1994, “
Gas Bubble Emboli Detected by Transcranial Doppler Sonography in Patients With Prosthetic Heart Valves: A Preliminary Report
,”
J. Ultrasound Med.
0278-4297,
13
, pp.
129
135
.
6.
Johansen
,
P.
,
Manning
,
K. B.
,
Tarbell
,
J. M.
,
Fontaine
,
A. A.
,
Deutsch
,
S.
, and
Nygaard
,
H.
, 2003, “
A New Method for Evaluation of Cavitation Near Mechanical Heart Valves
,”
J. Biomech. Eng.
0148-0731,
125
, pp.
663
670
.
7.
Franc
,
J. P.
, and
Michel
,
J. M.
, 2004,
Fundamentals of Cavitation
,
Kluwer Academic
,
Boston
.
8.
Sohn
,
K.
,
Manning
,
K. B.
,
Fontaine
,
A. A.
,
Tarbell
,
J. M.
, and
Deutsch
,
S.
, 2005, “
Acoustic and Visual Characteristics of Cavitation Induced by Mechanical Heart Valves
,”
J. Heart Valve Dis.
0966-8519,
14
, pp.
551
558
.
9.
Biancucci
,
B. A.
,
Deutsch
,
S.
,
Geselowitz
,
D. B.
, and
Tarbell
,
J. M.
, 1999, “
In Vitro Studies of Gas Bubble Formation by Mechanical Heart Valves
,”
J. Heart Valve Dis.
0966-8519,
8
(
2
), pp.
186
196
.
10.
Zapanta
,
C. M.
,
Stinebring
,
D. R.
,
Sneckenberger
,
D. S.
,
Deutsch
,
S.
,
Geselowitz
,
D. B.
,
Tarbell
,
J. M.
,
Snyder
,
A. J.
,
Rosenberg
,
G.
,
Weiss
,
W. J.
,
Pae
,
W. E.
, and
Pierce
,
W. S.
, 1996, “
In Vivo Observation of Cavitation on Prosthetic Heart Valves
,”
ASAIO J.
1058-2916,
42
, pp.
M550
M555
.
11.
Zapanta
,
C. M.
,
Stinebring
,
D. R.
,
Deutsch
,
S.
,
Geselowitz
,
D. B.
, and
Tarbell
,
J. M.
, 1998, “
A Comparison of the Cavitation Potential of Prosthetic Heart Valves Based on Valve Closing Dynamics
,”
J. Heart Valve Dis.
0966-8519,
7
, pp.
655
667
.
12.
Sneckenberger
,
D. S.
,
Stinebring
,
D. R.
,
Deutsch
,
S.
,
Geselowitz
,
D. B.
, and
Tarbell
,
J. M.
, 1996, “
Mitral Heart Valve Cavitation in an Artificial Heart Environment
,”
J. Heart Valve Dis.
0966-8519,
5
, pp.
216
227
.
13.
Garrison
,
L. A.
,
Lamson
,
T. C.
,
Deutsch
,
S.
,
Geselowitz
,
D. B.
,
Gaumond
,
R. P.
, and
Tarbell
,
J. M.
, 1994, “
An In-Vitro Investigation of Prosthetic Heart Valve Cavitation in Blood
,”
J. Heart Valve Dis.
0966-8519,
3
, pp.
S8
S24
.
14.
Guo
,
G. X.
,
Xu
,
C. C.
, and
Hwang
,
N. H.
, 1990, “
Laser Assessment of Leaflet Closing Motion in Prosthetic Heart Valves
,”
J. Biomed. Eng.
0141-5425,
12
, pp.
477
481
.
15.
Lee
,
C. S.
,
Chandran
,
K. B.
, and
Chen
,
L. D.
, 1996, “
Cavitation Dynamics of Medtronic Hall Mechanical Heart Valve Prosthesis: Fluid Squeezing Effect
,”
J. Biomech. Eng.
0148-0731,
118
, pp.
97
105
.
16.
Kini
,
V.
,
Bachmann
,
C.
,
Fontaine
,
A. A.
,
Deutsch
,
S.
, and
Tarbell
,
J. M.
, 2001, “
Integrating Particle Image Velocimetry and Laser Doppler Velocimetry Measurements of the Regurgitant Flow Field Past Mechanical Heart Valves
,”
Artif. Organs
0160-564X,
25
, pp.
136
145
.
17.
Manning
,
K. B.
,
Przybysz
,
T. M.
,
Fontaine
,
A. A.
,
Tarbell
,
J. M.
, and
Deutsch
,
S.
, 2005, “
Near Field Flow Characteristics of the Bjork-Shiley Monostrut Valve in a Modified Single Shot Valve Chamber
,”
ASAIO J.
1058-2916,
51
, pp.
133
138
.
18.
Aboufadel
,
E.
, and
Schlicker
,
S.
, 1999,
Discovering Wavelets
,
Wiley
,
New York
.
19.
Jensen
,
A.
, and
la Cour-Harbo
,
A.
, 2001,
Ripples in Mathematics: The Discrete Wavelet Transform
,
Springer-Verlag
,
New York
.
20.
Welz
,
J. P.
,
Iannacci
,
M. P.
, and
Jenkins
,
D. M.
, 2004, “
Cavitation Detection Using Wavelet Denoising
,” in
Proceedings of the 2004 ASME HTFED
, pp.
56
804
.
21.
Peng
,
Z. K.
, and
Chu
,
F. L.
, 2004, “
Application of the Wavelet Transform in Machine Condition Monitoring and Fault Diagnostics: A Review With Bibliography
,”
Mech. Syst. Signal Process.
0888-3270,
18
, pp.
199
221
.
22.
Chandran
,
K. B.
, and
Aluri
,
S.
, 1997, “
Mechanical Valve Closing Dynamics: Relationship Between Velocity of Closing, Pressure Transients, and Cavitation Initiation
,”
Ann. Biomed. Eng.
0090-6964,
25
, pp.
926
938
.
23.
Kini
,
V.
,
Bachmann
,
C.
,
Fontaine
,
A. A.
,
Deutsch
,
S.
, and
Tarbell
,
J. M.
, 2000, “
Flow Visualization in Mechanical Heart Valves: Occluder Rebound and Cavitation Potential
,”
Ann. Biomed. Eng.
0090-6964,
28
, pp.
431
441
.
24.
Herbertson
,
L. H.
,
Manning
,
K. B.
,
Reddy
,
V.
,
Fontaine
,
A. A.
,
Tarbell
,
J. M.
, and
Deutsch
,
S.
, 2005, “
The Effect of Dissolved Carbon Dioxide on Cavitation Intensity in Mechanical Heart Valves
,” J. Heart Valve Dis. (in press).
25.
Herman
,
B. A.
, and
Carey
,
R. F.
, 1994, “
A Protocol for the Evaluation of the Cavitation Potential of Mechanical Heart Valves
,”
J. Heart Valve Dis.
0966-8519,
3
, pp.
S128
S132
.
You do not currently have access to this content.