It is widely admitted that muscle bracing influences the result of an impact, facilitating fractures by enhancing load transmission and reducing energy dissipation. However, human numerical models used to identify injury mechanisms involved in car crashes hardly take into account this particular mechanical behavior of muscles. In this context, in this work we aim to develop a numerical model, including muscle architecture and bracing capability, focusing on lower limbs. The three-dimensional (3-D) geometry of the musculoskeletal system was extracted from MRI images, where muscular heads were separated into individual entities. Muscle mechanical behavior is based on a phenomenological approach, and depends on a reduced number of input parameters, i.e., the muscle optimal length and its corresponding maximal force. In terms of geometry, muscles are modeled with 3-D viscoelastic solids, guided in the direction of fibers with a set of contractile springs. Validation was first achieved on an isolated bundle and then by comparing emergency braking forces resulting from both numerical simulations and experimental tests on volunteers. Frontal impact simulation showed that the inclusion of muscle bracing in modeling dynamic impact situations can alter bone stresses to potentially injury-inducing levels.

1.
Treffner
,
P.
,
Barrett
,
R.
, and
Petersen
,
A.
, 2002, “
Stability and Skill in Driving
,”
Hum. Mov. Sci.
0167-9457
21
, pp.
749
784
.
2.
Owen
,
C.
,
Roberts
,
P.
, and
Lowne
,
R.
, 1998, “
Positioning and Bracing of the Lower Leg During Emergency Braking—A Volunteer Study
,” in
Proceedings of the International Conference of the Biomechanics of Impact
,
Göteborg
,
Sweden
.
3.
Palmertz
,
C.
,
Jacobsson
,
L.
, and
Karlsson
,
A. S.
, 1998, “
Pedal Use and Foot Positioning During Emergency Maneuvers
,” in
Proceedings of the International Conference of the Biomechanics of Impact
,
Göteborg
,
Sweden
.
4.
Armstrong
,
R. W.
,
Waters
,
H. P.
, and
Stapp
,
J. P.
, 1970, “
Impact Tests Show Restraining Force of Legs Might Be Used to Reduce Crash Effects
,”
SAE J.
0036-066X
38
, pp.
33
37
.
5.
Hendler
,
E.
,
O’Rourke
,
J.
,
Schulman
,
M.
,
Katzeff
,
M.
,
Domzalski
,
L.
, and
Rodgers
,
S.
, 1974, “
Effect of Head and Body Position and Muscular Tensing on Response to Impact
,” SAE Technical Paper No. 741184.
6.
Kumar
,
S.
,
Ferrari
,
R.
, and
Narayan
,
Y.
, 2005, “
Kinematic and Electromyographic Response to Whiplash Loading in Low-Velocity Whiplash Impacts—A Review
,”
Clin. Biomech. (Bristol, Avon)
0268-0033
20
, pp.
343
356
.
7.
Begeman
,
P. C.
,
King
,
A. I.
,
Levine
,
R. S.
, and
Viano
,
D. C.
, 1980, “
Biodynamic Response of the Musculoskeletal System to Impact Acceleration
,” SAE Technical Paper No. 801312.
8.
O’Connell
,
A. L.
, 1971, “
Effect of Sensory Deprivation on Postural Reflexes
,”
Electromyography
0013-4732
11
, pp.
519
527
.
9.
Klopp
,
G.
,
Crandall
,
J.
,
Sieveka
,
E.
, and
Pilkey
,
W.
, 1995, “
Simulation of Muscle Tensing in Pre-Impact Bracing
,” in
Proceedings of the International Conference of the Biomechanics of Impact
,
Brunnen
,
Switzerland
.
10.
Kitagawa
,
Y.
,
Ichikawa
,
H.
,
King
,
A. I.
, and
Levine
,
R. S.
, 1998, “
A Severe Ankle and Foot Injury in Frontal Crashes and its Mechanism
,” in
Proceedings of the 42nd Stapp Car Crash Conference
,
Tempe
,
Arizona
.
11.
Bedewi
,
P. G.
, and
Bedewi
,
N. E.
, 2000, “
Modeling of Occupant Biomechanics With Emphasis on the Analysis of the Lower Extremities Injuries
,” FHWA/NHTSA National Crash Analysis Center, http://www.goodpns.com/institute/articles/Lower.asp.
12.
Haug
,
E.
,
Choi
,
H.-Y.
,
Robin
,
S.
, and
Beaugonin
,
M.
, 2004, in
Handbook of Numerical Analysis
, Vol.
XII
(Ciarlet editors): Computational models for the human body (Ayache editors), pp.
297
361
.
13.
Cappon
,
H. J.
,
Van den Kroonenberg
,
A. J.
,
Happee
,
R.
, and
Wismans
,
J.
, 1999, “
An Improved Lower Leg Multi-Body Model
,” in
Proceedings of the International Conference of the Biomechanics of Impact
,
Sitges
,
Spain
.
14.
Petit
,
P.
, 1998, “
Etude de l’Influence Des Efforts Musculaires Sur le Chargement Des Membres Inférieurs en Choc Automobile
,” Ph.D. thesis, Ecole Nationale des Arts et Métiers, Paris.
15.
Wittek
,
A.
,
Kajzer
,
J.
, and
Haug
,
E.
, 2000, “
Hill-Type Model For Analysis of Mechanical Effect of Tension on the Human Body Response in a Car Collision Using an Explicit Finite Element Code
,”
JSME Int. J., Ser. C
1340-8062
43
, pp.
8
18
.
16.
Serre
,
T.
,
Behr
,
M.
,
Bidal
,
S.
, and
Brunet
,
C.
, 2001, “
3D Modeling of the Lower Limb Skeletal Muscles in Driving Position Using Splines
,”
Arch. Physiol. Biochem.
1381-3455
109
, p.
135
.
17.
Behr
,
M.
,
Arnoux
,
P. J.
,
Serre
,
T.
,
Bidal
,
S.
,
Kang
,
H. S.
,
Thollon
,
L.
,
Cavallero
,
C.
,
Kayvantash
,
K.
, and
Brunet
,
C.
, 2003, “
A Human Model for Road Safety: From Geometrical Acquisition to Model Validation with Radioss
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842
6
, pp.
263
273
.
18.
Robin
,
S.
, 2001, “
HUMOS: Human Model for Safety—A Joint Effort Towards the Development of Refined Human-Like Car Occupant Models
,” in
Proceedings of the 17th ESV Conference
,
Amsterdam
.
19.
Serre
,
T.
,
Brunet
,
C.
,
Bidal
,
S.
,
Behr
,
M.
,
Ghannouchi
,
S.
,
Chabert
,
L.
,
Durand
,
F.
,
Cavallero
,
C.
, and
Bonnoit
,
J.
, 2002, “
The Seated Man: Geometry Acquisition and Three-Dimensional Reconstruction
,”
Surg. Radiol. Anat.
0930-1038
24
, pp.
382
387
.
20.
Zajac
,
F. E.
, 1989, “
Muscle and Tendon: Properties, Models, Scaling and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
0278-940X ,
17
, pp.
359
411
.
21.
Hoy
,
G.
,
Zajac
,
F. E.
, and
Gordon
,
M. E.
, 1990, “
A Musculoskeletal Model of the Human Lower Extremity: The Effect of Muscle, Tendon, and Moment Arm on the Moment-Angle Relationship of Musculotendon Actuators at the Hip, Knee, and Ankle
,”
J. Biomech.
0021-9290
23
, pp.
157
169
.
22.
Delp
,
S. L.
,
Loan
,
J. P.
,
Hoy
,
M. G.
,
Zajac
,
F. E.
,
Topp
,
E. L.
, and
Rosen
,
J. M.
, 1990, “
An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopedic Surgical Procedures
,”
IEEE Trans. Biomed. Eng.
0018-9294
37
, pp.
757
767
.
23.
Jacobs
,
R.
,
Bobbert
,
M. F.
, and
Van Schenau
,
G. J.
, 1996, “
Mechanical Output From Individual Muscles During Explosive Leg Extensions: The Role of Biarticular Muscles
,”
J. Biomech.
0021-9290
29
, pp.
513
523
.
24.
Raasch
,
C. C.
,
Zajac
,
F. E.
,
Ma
,
B.
, and
Levine
,
W. S.
, 1997, “
Muscle Coordination of Maximum Speed Pedaling
,”
J. Biomech.
0021-9290
30
, pp.
595
602
.
25.
Spector
,
S. A.
,
Gardiner
,
P. F.
,
Zernicke
,
R. F.
,
Roy
,
R. R.
, and
Edgerton
,
V. R.
, 1980, “
Muscle Architecture and the Force-Velocity Characteristics of the Cat Soleus and Medial Gastrocnemius: Implications for Motor Control
,”
J. Neurophysiol.
0022-3077
44
, pp.
951
960
.
26.
Herzog
,
W.
, 1999, in
Biomechanics of the Musculo-Skeletal System
,
B. M.
Nigg
and
W.
Herzog
, eds.,
Wiley
, Chichester, pp.
148
188
.
27.
Behr
,
M.
,
Thiery
,
C.
,
Poumarat
,
G.
,
Serre
,
T.
,
Arnoux
,
P. J.
, and
Brunet
,
C.
, 2003, “
Muscular Activation During Emergency Braking: An Experimental Approach
,”
Arch. Physiol. Biochem.
1381-3455
111
, pp.
104
107
.
28.
Zioupos
,
P.
, 2001, “
Ageing Human Bones: Factors Affecting Its Biomechanical Properties and the Role of Collagen
,”
J. Biomater. Appl.
0885-3282
15
, pp.
187
229
.
29.
Burkholder
,
T. J.
, and
Lieber
,
R. L.
, 2001, “
Sarcoma Length Operating Range of Vertebrate Muscles During Movement
,”
J. Exp. Biol.
0022-0949
204
, pp.
1529
1536
.
You do not currently have access to this content.