Liquid plugs may form in pulmonary airways during the process of liquid instillation or removal in many clinical treatments. During inspiration the plug may split at airway bifurcations and lead to a nonuniform final liquid distribution, which can adversely affect treatment outcomes. In this paper, a combination of bench top experimental and theoretical studies is presented to study the effects of inertia and gravity on plug splitting in an airway bifurcation model to simulate the liquid distributions in large airways. The splitting ratio, Rs, is defined as the ratio of the plug volume entering the upper (gravitationally opposed) daughter tube to the lower (gravitationally favored) one. Rs is measured as a function of parent tube Reynolds number, Rep; gravitational orientations for roll angle, ϕ, and pitch angle, γ; parent plug length LP; and the presence of pre-existing plug blockages in downstream daughter tubes. Results show that increasing Rep causes more homogeneous splitting. A critical Reynolds number Rec is found to exist so that when RepRec, Rs=0, i.e., no liquid enters the upper daughter tube. Rec increases while Rs decreases with increasing the gravitational effect, i.e., increasing ϕ and γ. When a blockage exists in the lower daughter, Rec is only found at ϕ=60deg in the range of Rep studied, and the resulting total mass ratio can be as high as 6, which also asymptotes to a finite value for different ϕ as Rep increases. Inertia is further demonstrated to cause more homogeneous plug splitting from a comparison study of Rs versus Cap (another characteristic speed) for three liquids: water, glycerin, and LB-400X. A theoretical model based on entrance flow for the plug in the daughters is developed and predicts Rs versus Rep. The frictional pressure drop, as a part of the total pressure drop, is estimated by two fitting parameters and shows a linear relationship with Rep. The theory provides a good prediction on liquid plug splitting and well simulates the liquid distributions in the large airways of human lungs.

1.
Leach
,
C. L.
,
Greenspan
,
J. S.
,
Rubenstein
,
S. D.
,
Shaffer
,
T. H.
,
Wolfson
,
M. R.
,
Jackson
,
J. C.
,
DeLemos
,
R.
, and
Fuhrman
,
B. P.
, 1996, “
Partial Liquid Ventilation With Perflubron in Premature Infants With Severe Respiratory Distress Syndrome. The Liquivent Study Group
,”
N. Engl. J. Med.
0028-4793,
335
(
11
), pp.
761
7
.
2.
Shaffer
,
T. H.
, and
Wolfson
,
M. R.
, 1996, “
Liquid Ventilation: An Alternative Ventilation Strategy for Management of Neonatal Respiratory Distress
,”
Eur. J. Pediatr.
0340-6199,
155
, Suppl 2, pp.
S30
4
.
3.
Hirschl
,
R. B.
,
Conrad
,
S.
,
Kaiser
,
R.
,
Zwischenberger
,
J. B.
,
Bartlett
,
R. H.
,
Booth
,
F.
, and
Cardenas
,
V.
, 1998, “
Partial Liquid Ventilation in Adult Patients With ARDS: A Multicenter Phase I-II Trial. Adult PLV Study Group
,”
Ann. Surg.
0003-4932,
228
(
5
), pp.
692
700
.
4.
Hirschl
,
R. B.
,
Croce
,
M.
,
Gore
,
D.
,
Wiedemann
,
H.
,
Davis
,
K.
,
Zwischenberger
,
J.
, and
Bartlett
,
R. H.
, 2002, “
Prospective, Randomized, Controlled Pilot Study of Partial Liquid Ventilation in Adult Acute Respiratory Distress Syndrome
,”
Am. J. Respir. Crit. Care Med.
1073-449X,
165
(
6
), pp.
781
787
.
5.
Cox
,
P. N.
,
Frndova
,
H.
,
Karlsson
,
O.
,
Holowka
,
S.
, and
Bryan
,
C. A.
, 2003, “
Fluorocarbons Facilitate Lung Recruitment
,”
Intensive Care Med.
0342-4642,
29
(
12
), pp.
2297
2302
.
6.
Mikawa
,
K.
,
Nishina
,
K.
,
Takao
,
Y.
, and
Obara
,
H.
, 2004, “
Efficacy of Partial Liquid Ventilation in Improving Acute Lung Injury Induced by Intratracheal Acidified Infant Formula: Determination of Optimal Dose and Positive End-Expiratory Pressure Level
,”
Crit. Care Med.
0090-3493,
32
(
1
), pp.
209
216
.
7.
Corbet
,
A.
,
Bucciarelli
,
R.
,
Goldman
,
S.
,
Mammel
,
M.
,
Wold
,
D.
, and
Long
,
W.
, 1991, “
Decreased Mortality Rate Among Small Premature Infants Treated at Birth With a Single Dose of Synthetic Surfactant: A Multicenter Controlled Trial
,”
J. Pediatr. (St. Louis)
0022-3476,
118
(
2
), pp.
277
284
.
8.
Jobe
,
A. H.
, 1993, “
Pulmonary Surfactant Therapy
,”
N. Engl. J. Med.
0028-4793,
328
(
12
), pp.
861
868
.
9.
Long
,
W.
,
Thompson
,
T.
,
Sundell
,
H.
,
Schumacher
,
R.
,
Volberg
,
F.
, and
Guthrie
,
R.
, 1991, “
Effects of Two Rescue Doses of a Synthetic Surfactant on Mortality Rate and Survival Without Bronchopulmonary Dysplasia in 700-to1350-gram Infants With Respiratory Distress Syndrome. The American Exosurf Neonatal Study Group I
,”
J. Pediatr. (St. Louis)
0022-3476,
118
(
4
), Pt 1, pp.
595
605
.
10.
Salvia-Roiges
,
M. D.
,
Carbonell-Estrany
,
X.
,
Figueras-Aloy
,
J.
, and
Rodriguez-Miguelez
,
J. M.
, 2004, “
Efficacy of Three Treatment Schedules in Severe Meconium Aspiration Syndrome
,”
Acta Paediatr.
0803-5253,
93
(
1
), pp.
60
65
.
11.
Yapicioglu
,
H.
,
Yildizdas
,
D.
,
Bayram
,
I.
,
Sertdemir
,
Y.
, and
Yilmaz
,
H. L.
, 2003, “
The Use of Surfactant in Children With Acute Respiratory Distress Syndrome: Efficacy in Terms of Oxygenation, Ventilation and Mortality
,”
Pulm. Pharmacol. Ther.
1094-5539,
16
(
6
), pp.
327
333
.
12.
Iqbal
,
S.
,
Ritson
,
S.
,
Prince
,
I.
,
Denyer
,
J.
, and
Everard
,
M. L.
, 2004, “
Drug Delivery and Adherence in Young Children
,”
Pediatr. Pulmonol
8755-6863,
37
(
4
), pp.
311
317
.
13.
Yu
,
J.
, and
Chien
,
Y. W.
, 1997, “
Pulmonary Drug Delivery: Physiologic and Mechanistic Aspects
,”
Crit. Rev. Ther. Drug Carrier Syst.
0743-4863,
14
(
4
), pp.
395
453
.
14.
Zhang
,
Y. L.
,
Matar
,
O. K.
, and
Craster
,
R. V.
, 2003, “
A Theoretical Study of Chemical Delivery Within the Lung Using Exogenous Surfactant
,”
Med. Eng. Phys.
1350-4533,
25
(
2
), pp.
115
132
.
15.
Myrdal
,
P. B.
,
Karlage
,
K. L.
,
Stein
,
S. W.
,
Brown
,
B. A.
, and
Haynes
,
A.
, 2004, “
Optimized Dose Delivery of the Peptide Cyclosporine Using Hydrofluoroalkane-Based Metered Dose Inhalers
,”
J. Pharm. Sci.
0022-3549,
93
(
4
), pp.
1054
1061
.
16.
Jensen
,
O. E.
,
Halpern
,
D.
, and
Grotberg
,
J. B.
, 1994, “
Transport of a Passive Solute by Surfactant-Driven Flows
,”
Chem. Eng. Sci.
0009-2509,
49
(
8
), pp.
1107
1117
.
17.
Zheng
,
Y.
,
Anderson
,
J. C.
,
Suresh
,
V. A.
, and
Grotberg
,
J. B.
, 2005, “
Effect of Gravity on Liquid Plug Transport Through an Airway Bifurcation Model
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
798
806
.
18.
Bull
,
J. L.
,
Tredici
,
S.
,
Komori
,
E.
,
Brant
,
D. O.
,
Grotberg
,
J. B.
, and
Hirschl
,
R. B.
, 2004, “
Distribution Dynamics of Perfluorocarbon Delivery to the Lungs: An Intact Rabbit Model
,”
J. Appl. Physiol.
8750-7587,
96
(
5
), pp.
1633
1642
.
19.
Ueda
,
T.
,
Ikegami
,
M.
,
Rider
,
E. D.
, and
Jobe
,
A. H.
, 1994, “
Distribution of Surfactant and Ventilation in Surfactant-Treated Preterm Lambs
,”
J. Appl. Physiol.
8750-7587,
76
(
1
), pp.
45
55
.
20.
Anderson
,
J. C.
,
Molthen
,
R. C.
,
Dawson
,
C. A.
,
Haworth
,
S. T.
,
Bull
,
J. L.
,
Glucksberg
,
M. R.
, and
Grotberg
,
J. B.
, 2004, “
Effect of Ventilation Rate on Instilled Surfactant Distribution in the Pulmonary Airways of Rats
,”
J. Appl. Physiol.
8750-7587,
97
(
1
), pp.
45
56
.
21.
Cassidy
,
K. J.
,
Gavriely
,
N.
, and
Grotberg
,
J. B.
, 2001, “
Liquid Plug Flow in Straight and Bifurcating Tubes
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
6
), pp.
580
589
.
22.
Girard
,
P. R.
, and
Nerem
,
R. M.
, 1995, “
Shear-Stress Modulates Endothelial-Cell Morphology and F-Actin Organization Through the Regulation of Focal Adhesion-Associated Proteins
,”
J. Cell Physiol.
0021-9541,
163
(
1
), pp.
179
193
.
23.
Davis
,
J. M.
,
Russ
,
G. A.
,
Metlay
,
L.
,
Dickerson
,
B.
, and
Greenspan
,
B. S.
, 1992, “
Short-Term Distribution Kinetics of Intratracheally Administered Exogenous Lung Surfactant
,”
Pediatr. Res.
0031-3998,
31
(
5
), pp.
445
450
.
24.
Halpern
,
D.
,
Jensen
,
O. E.
, and
Grotberg
,
J. B.
, 1998, “
A Theoretical Study of Surfactant and Liquid Delivery Into the Lung
,”
J. Appl. Physiol.
8750-7587,
85
(
1
), pp.
333
352
.
25.
Cassidy
,
K. J.
,
Bull
,
J. L.
,
Glucksberg
,
M. R.
,
Dawson
,
C. A.
,
Haworth
,
S. T.
,
Hirschl
,
R. B.
,
Gavriely
,
N.
, and
Grotberg
,
J. B.
, 2001, “
A Rat Lung Model of Instilled Liquid Transport in the Pulmonary Airways
,”
J. Appl. Physiol.
8750-7587,
90
, pp.
1955
1967
.
26.
Espinosa
,
F. F.
, and
Kamm
,
R. D.
, 1998, “
Meniscus Formation During Tracheal Instillation of Surfactant
,”
J. Appl. Physiol.
8750-7587,
85
(
1
), pp.
266
272
.
27.
Fujioka
,
H.
, and
Grotberg
,
J. B.
, 2004, “
Steady Propagation of a Liquid Plug in a 2-Dimensional Channel
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
5
), pp.
567
577
.
28.
Suresh
,
V.
, and
Grotberg
,
J. B.
, 2005, “
The Effect of Gravity on Liquid Plug Propagation in a Two-Dimensional Channel
,”
Phys. Fluids
1070-6631,
17
(
3
), p.
031507
.
29.
Jensen
,
M. H.
,
Libchaber
,
A.
,
Pelce
,
P.
, and
Zocchi
,
G.
, 1987, “
Effect of Gravity on the Saffman-Taylor Meniscus-Theory and Experiment
,”
Phys. Rev. A
1050-2947,
35
(
5
), pp.
2221
2227
.
30.
Fujioka
,
H.
, and
Grotberg
,
J. B.
, 2005, “
The Steady Propagation of a Surfactant-Laden Liquid Plug in a Two-Dimensional Channel
,”
Phys. Fluids
1070-6631,
17
(
8
), pp.
082102
.
31.
Fleming
,
J. S.
,
Nassim
,
M.
,
Hashish
,
A. H.
,
Bailey
,
A. G.
,
Conway
,
J.
,
Holgate
,
S.
,
Halson
,
P.
,
Moore
,
E.
, and
Martonen
,
T. B.
, 1995, “
Description of Pulmonary Deposition of Radiolabeled Aerosol by Airway Generation Using a Conceptual 3-Dimensional Model of Lung Morphology
,”
J. Aerosol Med.-Depos. Clear. Eff. Lung
,
8
(
4
), pp.
341
356
.
32.
Sauret
,
V.
,
Halson
,
R. M.
,
Brown
,
I. W.
,
Fleming
,
J. S.
, and
Bailey
,
A. G.
, 2002, “
Study of the Three-Dimensional Geometry of the Central Conducting Airways in Man Using Computed Tomographic (CT) Images
,”
J. Anat.
0021-8782,
200
(
2
), pp.
123
134
.
33.
Weibel
,
E. R.
, 1963,
Morphometry of the Human Lung
Academic Press
,
New York
, p.
151
.
34.
Wolffenbuttel
,
B. M. A.
,
Nijhuis
,
T. A.
,
Stankiewicz
,
A.
, and
Moulijn
,
J. A.
, 2002, “
Novel Method for Non-Intrusive Measurement of Velocity and Slug Length in Two- and Three-Phase Slug Flow in Capillaries
,”
Meas. Sci. Technol.
0957-0233,
13
(
10
), pp.
1540
1544
.
35.
Liu
,
Y.
,
So
,
R. M. C.
, and
Zhang
,
C. H.
, 2002, “
Modeling the Bifurcating Flow in a Human Lung Airway
,”
J. Biomech.
0021-9290,
35
, pp.
465
473
.
36.
Pedley
,
R. J.
, and
Kamm
,
R. D.
, 1991,
Dynamics of Gas Flow and Pressure-Flow Relationships
,
The Lung: Scientific Foundations
,
Crystal
,
R. G.
,
West
J. B.
, et al.
, eds.,
Raven Press
,
New York
, Chap. 5.1.2.2.
37.
Pedley
,
T. J.
, 1977, “
Pulmonary Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
0066-4189,
9
, pp.
229
274
.
38.
Collins
,
J. M.
,
Shapiro
,
A. H.
,
Kimmel
,
E.
, and
Kamm
,
R. D.
, 1993, “
The Steady Expiratory Pressure-Flow Relation in a Model Pulmonary Bifurcation
,”
J. Biomech.
0021-9290,
115
(
3
), pp.
299
305.
You do not currently have access to this content.