The mechanical properties of articular cartilage serve as important measures of tissue function or degeneration, and are known to change significantly with osteoarthritis. Interest in small animal and mouse models of osteoarthritis has increased as studies reveal the importance of genetic background in determining predisposition to osteoarthritis. While indentation testing provides a method of determining cartilage mechanical properties in situ, it has been of limited value in studying mouse joints due to the relatively small size of the joint and thickness of the cartilage layer. In this study, we developed a micro-indentation testing system to determine the compressive and biphasic mechanical properties of cartilage in the small joints of the mouse. A nonlinear optimization program employing a genetic algorithm for parameter estimation, combined with a biphasic finite element model of the micro-indentation test, was developed to obtain the biphasic, compressive material properties of articular cartilage. The creep response and material properties of lateral tibial plateau cartilage were obtained for wild-type mouse knee joints, by the micro-indentation testing and optimization algorithm. The newly developed genetic algorithm was found to be efficient and accurate when used with the finite element simulations for nonlinear optimization to the experimental creep data. The biphasic mechanical properties of mouse cartilage in compression (average values: Young’s modulus, 2.0MPa; Poisson’s ratio, 0.20; and hydraulic permeability, 1.1×1016m4Ns) were found to be of similar orders of magnitude as previous findings for other animal cartilages, including human, bovine, rat, and rabbit and demonstrate the utility of the new test methods. This study provides the first available data for biphasic compressive properties in mouse cartilage and suggests a promising method for detecting altered cartilage mechanics in small animal models of osteoarthritis.

1.
Akizuki
,
S.
,
Mow
,
V. C.
,
Muller
,
F.
,
Pita
,
J. C.
,
Howell
,
D. S.
, and
Manicourt
,
D. H.
, 1986, “
Tensile Properties of Human Knee Joint Cartilage. I. Influence of Ionic Conditions, Weight Bearing, and Fibrillation on the Tensile Modulus
,”
J. Orthop. Res.
0736-0266,
4
(
4
), pp.
379
392
.
2.
Armstrong
,
C. G.
, and
Mow
,
V. C.
, 1982, “
Variations in the Intrinsic Mechanical Properties of Human Articular Cartilage With Age, Degeneration, and Water Content
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
64
(
1
), pp.
88
94
.
3.
Kempson
,
G. E.
, 1991, “
Age-Related Changes in the Tensile Properties of Human Articular Cartilage: A Comparative Study Between the Femoral Head of the Hip Joint and the Talus of the Ankle Joint
,”
Biochim. Biophys. Acta
0006-3002,
1075
(
3
), pp.
223
230
.
4.
Roberts
,
S.
,
Weightman
,
B.
,
Urban
,
J.
, and
Chappell
,
D.
, 1986, “
Mechanical and Biochemical Properties of Human Articular Cartilage in Osteoarthritic Femoral Heads and in Autopsy Specimens
,”
J. Bone Joint Surg. Br.
0301-620X,
68
(
2
), pp.
278
288
.
5.
Elliott
,
D. M.
,
Guilak
,
F.
,
Vail
,
T. P.
,
Wang
,
J. Y.
, and
Setton
,
L. A.
, 1999, “
Tensile Properties of Articular Cartilage Are Altered by Meniscectomy in a Canine Model of Osteoarthritis
,”
J. Orthop. Res.
0736-0266,
17
(
4
), pp.
503
508
.
6.
Setton
,
L. A.
,
Mow
,
V. C.
,
Muller
,
F. J.
,
Pita
,
J. C.
, and
Howell
,
D. S.
, 1994, “
Mechanical Properties of Canine Articular Cartilage Are Significantly Altered Following Transection of the Anterior Cruciate Ligament
,”
J. Orthop. Res.
0736-0266,
12
(
4
), pp.
451
463
.
7.
Guilak
,
F.
,
Ratcliffe
,
A.
,
Lane
,
N.
,
Rosenwasser
,
M. P.
, and
Mow
,
V. C.
, 1994, “
Mechanical and Biochemical Changes in the Superficial Zone of Articular Cartilage in Canine Experimental Osteoarthritis
,”
J. Orthop. Res.
0736-0266,
12
(
4
), pp.
474
484
.
8.
Sah
,
R. L.
,
Yang
,
A. S.
,
Chen
,
A. C.
,
Hant
,
J. J.
,
Halili
,
R. B.
,
Yoshioka
,
M.
,
Amiel
,
D.
, and
Coutts
,
R. D.
, 1997, “
Physical Properties of Rabbit Articular Cartilage After Transection of the Anterior Cruciate Ligament
,”
J. Orthop. Res.
0736-0266,
15
(
2
), pp.
197
203
.
9.
LeRoux
,
M. A.
,
Arokoski
,
J.
,
Vail
,
T. P.
,
Guilak
,
F.
,
Hyttinen
,
M. M.
,
Kiviranta
,
I.
, and
Setton
,
L. A.
, 2000, “
Simultaneous Changes in the Mechanical Properties, Quantitative Collagen Organization, and Proteoglycan Concentration of Articular Cartilage Following Canine Meniscectomy
,”
J. Orthop. Res.
0736-0266,
18
(
3
), pp.
383
392
.
10.
Helminen
,
H. J.
,
Saamanen
,
A. M.
,
Salminen
,
H.
, and
Hyttinen
,
M. M.
, 2002, “
Transgenic Mouse Models for Studying the Role of Cartilage Macromolecules in Osteoarthritis
,”
Rheumatology
0080-2727,
41
(
8
), pp.
848
856
.
11.
Flahiff
,
C. M.
,
Kraus
,
V. B.
,
Huebner
,
J. L.
, and
Setton
,
L. A.
, 2004, “
Cartilage Mechanics in the Guinea Pig Model of Osteoarthritis Studied with an Osmotic Loading Method
,”
Osteoarthritis Cartilage
1063-4584,
12
(
5
), pp.
383
388
.
12.
Xu
,
L.
,
Flahiff
,
C. M.
,
Waldman
,
B. A.
,
Wu
,
D.
,
Olsen
,
B. R.
,
Setton
,
L. A.
, and
Li
,
Y.
, 2003, “
Osteoarthritis-Like Changes and Decreased Mechanical Function of Articular Cartilage in the Joints of Mice with the Chondrodysplasia Gene (Cho)
,”
Arthritis Rheum.
0004-3591,
48
(
9
), pp.
2509
2518
.
13.
Athanasiou
,
K. A.
,
Zhu
,
C. F.
,
Wang
,
X.
, and
Agrawal
,
C. M.
, 2000, “
Effects of Aging and Dietary Restriction on the Structural Integrity of Rat Articular Cartilage
,”
Ann. Biomed. Eng.
0090-6964,
28
(
2
), pp.
143
149
.
14.
Hyttinen
,
M. M.
,
Toyras
,
J.
,
Lapvetelainen
,
J.
,
Lindblom
,
J.
,
Prockop
,
D. J.
,
Li
,
S.-W.
,
Arita
,
M.
,
Jurvelin
,
J. S.
, and
Helminen
,
H. J.
, 2001, “
Inactivation of One Allele of the Type II Collagen Gene Alters the Collagen Network in Murine Articular Cartilage and Makes Cartilage Softer
,”
Ann. Rheum. Dis.
0003-4967,
60
(
3
), pp.
262
268
.
15.
Nelder
,
J. A.
, and
Mead
,
R.
, 1965, “
A Simplex Method for Function Minimization
,”
Comput. J.
0010-4620,
7
(
4
), pp.
308
313
.
16.
Goldberg
,
D. E.
, 1989,
Genetic Algorithms in Search, Optimization and Machine Learning
,
Kluwer Academic
,
Boston
.
17.
Bulstra
,
S. K.
,
Buurman
,
W. A.
,
Walenkamp
,
G. H.
, and
Van der Linden
,
A. J.
, 1989, “
Metabolic Characteristics of In Vitro Cultured Human Chondrocytes in Relation to the Histopathologic Grade of Osteoarthritis
,”
Clin. Orthop. Relat. Res.
0009-921X,
242
, pp.
294
302
.
18.
LeRoux
,
M. A.
, and
Setton
,
L. A.
, 2002, “
Experimental and Biphasic FEM Determinations of the Material Properties and Hydraulic Permeability of the Meniscus in Tension
,”
J. Biomech. Eng.
0148-0731,
124
(
3
), pp.
315
321
.
19.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
, 1980, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiment
,”
J. Biomech. Eng.
0148-0731,
102
(
1
), pp.
73
84
.
20.
Storn
,
R.
, and
Price
,
K.
, 1997, “
Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces
,”
J. Global Optim.
0925-5001,
11
, pp.
341
359
.
21.
DiSilvestro
,
M. R.
,
Zhu
,
Q.
,
Wong
,
M.
,
Jurvelin
,
J. S.
, and
Suh
,
J. K.
, 2001, “
Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage: I. Simultaneous Prediction of Reaction Force and Lateral Displacement
,”
J. Biomech. Eng.
0148-0731,
123
(
2
), pp.
191
197
.
22.
Storn
,
R.
, and
Price
,
K.
, 1996, “
Minimizing the Real Functions of the ICEC’96 Contest by Differential Evolution
,”
IEEE Conference on Evolutionary Computation
, Nagoya, pp.
842
844
.
23.
Brunschwig
,
A. S.
, and
Salt
,
A. N.
, 1997, “
Fixation-Induced Shrinkage of Reissner’s Membrane and Its Potential Influence on the Assessment of Endolymph Volume
,”
Hear. Res.
0378-5955,
114
(
1–2
), pp.
62
68
.
24.
Athanasiou
,
K. A.
,
Rosenwasser
,
M. P.
,
Buckwalter
,
J. A.
,
Malinin
,
T. I.
, and
Mow
,
V. C.
, 1991, “
Interspecies Comparisons of In Situ Intrinsic Mechanical Properties of Distal Femoral Cartilage
,”
J. Orthop. Res.
0736-0266,
9
(
3
), pp.
330
340
.
25.
Athanasiou
,
K. A.
,
Agarwal
,
A.
, and
Dzida
,
F. J.
, 1994, “
Comparative Study of the Intrinsic Mechanical Properties of the Human Acetabular and Femoral Head Cartilage
,”
J. Orthop. Res.
0736-0266,
12
(
3
), pp.
340
349
.
26.
Setton
,
L. A.
,
Elliott
,
D. M.
, and
Mow
,
V. C.
, 1999, “
Altered Mechanics of Cartilage with Osteoarthritis: Human Osteoarthritis and an Experimental Model of Joint Degeneration
,”
Osteoarthritis Cartilage
1063-4584,
7
(
1
), pp.
2
14
.
27.
Leroux
,
M. A.
,
Cheung
,
H. S.
,
Bau
,
J. L.
,
Wang
,
J. Y.
,
Howell
,
D. S.
, and
Setton
,
L. A.
, 2001, “
Altered Mechanics and Histomorphometry of Canine Tibial Cartilage Following Joint Immobilization
,”
Osteoarthritis Cartilage
1063-4584,
9
(
7
), pp.
633
640
.
28.
Jurvelin
,
J. S.
,
Buschmann
,
M. D.
, and
Hunziker
,
E. B.
, 2003, “
Mechanical Anisotropy of the Human Knee Articular Cartilage in Compression
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
217
(
3
), pp.
215
219
.
29.
Mow
,
V. C.
, and
Setton
,
L. A.
, 1998, “
Mechanical Properties of Normal and Osteoarthritic Articular Cartilage
,” in
Osteoarthritis
,
D. D.
Brandt
,
M.
Doherty
, and
L. S.
Lohmander
(eds.)
Oxford University Press
,
New York
, pp.
108
122
.
30.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
, 2000, “
A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-Compression Nonlinearity in Articular Cartilage
,”
J. Biomech. Eng.
0148-0731,
122
(
6
),
576
586
.
You do not currently have access to this content.