To date, no apparatus has yet been devised which would allow the study of bone microstructure of the whole vertebrae under mechanical loading. This paper outlines the design and development of a 3-axis radio-translucent mechanical testing rig for spinal research and testing. This rig is to be used in conjunction with a Shimadzu micro-CT scanner. Several tests were conducted to verify the feasibility of the rig design. First, the maximum range of deformation in compression, flexion\extension, and lateral bending that could be exerted on a goat lumbar functional spinal unit was evaluated using the noncontact digital markers method. Stepwise compression loading was also conducted on a single porcine vertebra and the loading data was compared to results obtained from an industrial grade compression testing machine. Finally, micro-CT scans of a porcine vertebra prior to and at a compression failure strain were obtained. The rig was confirmed to be able to exert pure moment loading in the above mentioned modes of deformation and the extent of deformation was comparable to previous documented results. The stepwise compression loading conducted in the rig was also found to effectively approximate a continuous loading of the same specimen in an industrial grade compression testing machine. Finally, resultant micro-CT images of isotropic resolution 32.80μm of a porcine vertebra loaded in the rig were obtained. For the first time, trabecular microarchitecture detail of a whole vertebra buckling under 12.1% failure compression strain loading was studied using voxel-data visualization software. These initial series of tests verify the feasibility of the rig as an apparatus incorporating spinal testing and imaging.

1.
Wilke
,
H. J.
,
Claes
,
L. E.
,
Schmitt
,
H.
, and
Wolf
,
S.
, 1994, “
A Universal Spine Tester for In-Vitro Experiments With Muscle Force Simulation
,”
Eur. Spine J.
0940-6719,
3
, pp.
91
97
.
2.
Wilke
,
H. J.
,
Wolf
,
S.
,
Claes
,
L. E.
,
Arand
,
M.
, and
Wiesend
,
A.
, 1995, “
Stability Increases of the Lumbar Spine With Different Muscle Groups
,”
Spine
0362-2436,
20
, pp.
192
198
.
3.
Chung
,
S. M.
,
Teoh
,
S. H.
,
Tsai
,
K. T.
, and
Sin
,
K. K.
, 2002, “
Multi-Axial Spine Biomechanical Testing System With Speckle Displacement Instrumentation
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
471
477
.
4.
Nazarian
,
A.
,
Müller
,
R.
, 2004, “
Time-Lapsed Microstructural Imaging of Bone Failure Behavior
,”
J. Biomech.
0021-9290,
37
, pp.
55
65
.
5.
Wilke
,
H. J.
,
Rohlmann
,
A.
,
Neller
,
S.
,
Schultheiß
,
G.
,
Graichen
,
F.
, and
Claes
,
L. E.
, 2001, “
Is it Possible to Simulate Physiologic Loading Conditions by Applying Pure Moments?
Spine
0362-2436,
26
(
6
), pp.
636
642
.
6.
Panjabi
,
M. M.
, 1988, “
Biomechanical Evaluation of Spinal Fixation Devices: I. A Conceptual Framework
,”
Spine
0362-2436,
13
, pp.
1129
1134
.
7.
Goel
,
V. K.
,
Clark
,
C. R.
,
Harris
,
K. G.
,
Kim
,
Y. E.
, and
Schulte
,
K. R.
, 1989, “
Evaluation of Effectiveness of a Facet Wiring Technique: An In-Vitro Biomechanical Investigation
,”
Ann. Biomed. Eng.
0090-6964,
17
, pp.
115
126
.
8.
Panjabi
,
M. M.
,
Duranceau
,
J. S.
,
Oxland
,
T. R.
, and
Bowen
,
C. E.
, 1989, “
Multidirectional Instabilities of Traumatic Cervical Spine Injuries in a Porcine Model
,”
Spine
0362-2436,
14
(
10
), pp.
1111
1115
.
9.
Crawford
,
N. R.
,
Brantley
,
A. G.
,
Dickman
,
C. A.
, and
Koeneman
,
E. J.
, 1995, “
An Apparatus for Applying Pure Nonconstraining Moments to Spine Segment In-Vitro
,”
Spine
0362-2436,
20
, pp.
2097
2100
.
10.
Oxland
,
T. R.
,
Lund
,
T.
,
Jost
,
B.
,
Cripton
,
P.
,
Lippuner
,
K.
,
Jaeger
,
P.
, and
Nolte
,
L. P.
, 1996, “
The Relative Importance of Vertebral Bone Density and Disc Degeneration in Spinal Flexibility and Interbody Implant Performance
,”
Spine
0362-2436,
21
, pp.
2558
2569
.
11.
Lund
,
T.
,
Oxland
,
T. R.
,
Jost
,
B.
,
Cripton
,
P.
,
Grassmann
,
S.
,
Etter
,
C.
, and
Nolte
,
L. P.
, 1998, “
Interbody Cage Stabilization in the Lumbar Spine
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
80
(
2
), pp.
351
359
.
12.
Kunz
,
D. N.
,
McCabe
,
R. P.
,
Zdeblick
,
T. A.
, and
Vanderby
,
R.
, 1995, “
A Multi-Degree of Freedom System for Biomechanical Testing
,”
J. Biomech.
0021-9290,
116
(
3
), pp.
371
383
.
13.
Cholewicki
,
J.
,
Crisco
,
J. J.
,
Oxland
,
T. R.
,
Yamamoto
,
I.
, and
Panjabi
,
M. M.
, 1996, “
Effects of Posture and Structure on Three Dimensional Coupled Rotations in the Lumbar Spine
,”
Spine
0362-2436,
21
, pp.
2421
2428
.
14.
Adams
,
M. A.
, and
Hutton
,
W. C.
, 1992,
Mechanics of the Intervertebral Disc
,
CRC Press
,
Florida
, Vol.
II
, pp.
39
71
.
15.
Panjabi
,
M. M.
,
Oxland
,
T. R.
,
Yamamoto
,
I.
, and
Crisco
,
J. J.
, 1994, “
Mechanical Behavior of the Human Lumbar and Lumbosacral Spine as Shown by Three-Dimensional Load-Displacement Curves
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
76
(
3
), pp.
413
424
.
16.
Zhou
,
S. H.
, and
McCarthy
,
I. D.
, 2000, “
Geometrical Dimensions of the Lower Lumbar Vertebrae—Analysis of Data from Digitised CT Images
,”
Eur. Spine J.
0940-6719,
9
, pp.
242
248
.
17.
Brinkman
,
P.
, and
Horst
,
M.
, 1985, “
The Influence of Vertebral Body Fracture, Intradiscal Injection, and Partial Discectomy on the Radial Bulge and Height of Human Lumbar Discs
,”
Spine
0362-2436,
9
, pp.
138
145
.
18.
Wilke
,
H. J.
, and
Wenger
,
K.
, 1998, “
Testing Criteria for Spinal Implants: Recommendations for the Standardization of In Vitro Stability Testing of Spinal Implants
,”
Eur. Spine J.
0940-6719,
7
, pp.
148
154
.
19.
Callaghan
,
J. P.
, and
McGill
,
S. M.
, 2001, “
Intervertebral Disc Herniation: Studies on a Porcine Model Exposed to Highly Repetitive Flexion∕Extension Motion With Compressive Force
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
16
, pp.
28
37
.
20.
Pflaster
,
D. S.
, and
Krag
,
M. H.
, 1997, “
Effect of Test Environment on Intervertebral Disc Hydration
,”
Spine
0362-2436,
22
(
2
), pp.
133
39
.
21.
Wilke
,
H. J.
, and
Kettler
,
A.
, 1997, “
Are Sheep Spines a Valid Biomechanical Model for Human Spines?
,”
Spine
0362-2436,
22
(
20
), pp.
2365
2374
.
22.
Yingling
,
V. R.
, and
Callaghan
,
J. P.
, 1999, “
The Porcine Cervical Spine as a Model of the Human Lumbar Spine: An Anatomical, Geometric, and Functional Comparison
,”
J. Spinal Disord.
0895-0385,
12
(
5
), pp.
415
423
.
23.
Panjabi
,
M. M.
,
Krag
,
M.
,
Summers
,
D.
, and
Videman
,
T.
, 1985, “
Biomechanical Time Tolerance of Fresh and Cadaveric Human Spine Specimens
,”
J. Orthop. Res.
0736-0266,
3
, pp.
292
300
24.
Yerby
,
S. A.
, and
Bay
,
B. K.
, 1998, “
The Effect of Boundary Conditions on Experimentally Measured Trabecular Strain in the Thoracic Spine
,”
J. Biomech.
0021-9290,
31
, pp.
891
897
.
25.
Osvalder
,
A. L.
, and
Neumann
,
P.
, 1990, “
Ultimate Strength of the Lumbar Spine in Flexion—An In Vitro Study
,”
J. Biomech.
0021-9290,
23
(
5
), pp.
453
460
.
26.
Crawford
,
N. R.
, and
Brantley
,
A. G.
, 1995, “
An Apparatus for Applying Pure Nonconstraining Moments to Spine Segments In Vitro
,”
Spine
0362-2436,
20
(
19
), pp.
2097
2100
.
27.
Wilke
,
H. J.
,
Jungkunz
,
B.
, and
Wenger
,
K.
, 1998, “
Spinal Segment Range of Motion as a Function of In Vitro Test Conditions: Effects of Exposure Period, Accumulated Cycles, Angular-Deformation Rate, and Moisture Condition
,”
Anat. Rec.
0003-276X,
25
, pp.
15
19
.
28.
Turner
,
C. H.
, and
Burr
,
D. B.
, 1993, “
Basic Biomechanical Measurements of Bone: A Tutorial
,”
Bone (Osaka)
0914-7047,
14
, pp.
595
606
.
29.
McCubbrey
,
D. A.
,
Cody
,
D. D.
,
Petereson
,
E. L.
,
Kuhn
,
J. L.
,
Flynn
,
M. J.
, and
Goldstein
,
S. A.
, 1995, “
Static and Fatigue Failure Properties of Thoracic and Lumbar Vertebral Bodies and Their Relation to Regional Density
,”
J. Biomech.
0021-9290,
28
(
8
), pp.
891
899
.
30.
Yan
,
C. H.
,
Whalen
,
R. T.
,
Beaupré
,
G. S.
,
Yen
,
S. Y.
, and
Napel
,
S.
, 2000, “
Reconstruction Algorithm or Poly-Chromatic CT Imaging: With Application to Beam Hardening Correction
,”
IEEE Trans. Med. Imaging
0278-0062,
19
(
1
), pp.
1
12
.
31.
Yamamoto
,
I.
,
Panjabi
,
M.
,
Crisco
,
J.
,
Oxland
,
T.
, and
Bonar
,
S.
, 1989, “
Three-Dimensional Movements of the Whole Lumbar Spine and Lumbosacral Joint
,” Tras. Int. Soc. For Study of Lumbar Spine, Kyoto, Japan.
32.
Pearcy
,
M. J.
, 1985, “
Stereo Radiography of Lumbar Spine Motion
,”
Acta Orthop. Scand.
0001-6470,
56
, pp.
212
220
.
33.
Panjabi
,
M.
,
Oxland
,
T.
,
Yamamoto
,
I.
, and
Crisco
,
J.
, 1994, “
Mechanical Behavior of the Human Lumbar and Lumbosacral Spine as Shown by Three-Dimensional Load-Displacement Curves
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
76
, pp.
413
424
.
34.
Adams
,
M. A.
, 1995, “
Mechanical Testing of the Spine—An Appraisal of Methodology Results, and Conclusions
,”
Spine
0362-2436,
20
(
19
), pp.
2151
2156
.
35.
Nagaraja
,
S.
,
Couse
,
T. L.
, and
Guldberg
,
R. E.
, 2005, “
Trabecular Bone Microdamage and Microstrucutral Stresses Under Uniaxial Compression
,”
J. Biomech.
0021-9290,
38
, pp.
707
716
.
36.
Bay
,
B. K.
,
Yerby
,
S. A.
, and
McLain
,
R. F.
, 1999, “
Measurement of Strain Distributions Within Vertebral Body Sections by Texture Correlation
.”
Spine
0362-2436,
24
(
1
), pp.
10
17
.
37.
Müller
,
R.
, and
Rüegsegger
,
P.
, 1997, “
Micro-Tomographic Imaging for the Nondestructive Evaluation of Trabecular Bone Architecture
,” in
Bone Research in Biomechanics
,
Lowet
G.
et al.
, ed.,
IOS Press
, pp.
61
79
.
38.
Bay
,
B. K.
,
Smith
,
T. S.
, and
Fyhrie
,
D. P.
, 1999, “
Digital Volume Correlation: Three-Dimensional Strain Mapping Using X-Ray Tomography
,”
Exp. Mech.
0014-4851,
39
(
3
), pp.
217
226
.
You do not currently have access to this content.