Abstract

A three-dimensional (3D) contact finite element formulation has been developed for biological soft tissue-to-tissue contact analysis. The linear biphasic theory of Mow, Holmes, and Lai (1984, J. Biomech., 17(5), pp. 377–394) based on continuum mixture theory, is adopted to describe the hydrated soft tissue as a continuum of solid and fluid phases. Four contact continuity conditions derived for biphasic mixtures by Hou et al. (1989, ASME J. Biomech. Eng., 111(1), pp. 78–87) are introduced on the assumed contact surface, and a weighted residual method has been used to derive a mixed velocity-pressure finite element contact formulation. The Lagrange multiplier method is used to enforce two of the four contact continuity conditions, while the other two conditions are introduced directly into the weighted residual statement. Alternate formulations are possible, which differ in the choice of continuity conditions that are enforced with Lagrange multipliers. Primary attention is focused on a formulation that enforces the normal solid traction and relative fluid flow continuity conditions on the contact surface using Lagrange multipliers. An alternate approach, in which the multipliers enforce normal solid traction and pressure continuity conditions, is also discussed. The contact nonlinearity is treated with an iterative algorithm, where the assumed area is either extended or reduced based on the validity of the solution relative to contact conditions. The resulting first-order system of equations is solved in time using the generalized finite difference scheme. The formulation is validated by a series of increasingly complex canonical problems, including the confined and unconfined compression, the Hertz contact problem, and two biphasic indentation tests. As a clinical demonstration of the capability of the contact analysis, the gleno-humeral joint contact of human shoulders is analyzed using an idealized 3D geometry. In the joint, both glenoid and humeral head cartilage experience maximum tensile and compressive stresses are at the cartilage-bone interface, away from the center of the contact area.

1.
Mow
,
V. C.
,
Holmes
,
M. H.
, and
Lai
,
W. M.
, 1984, “
Fluid Transport and Mechanical Properties of Articular Cartilage: A Review
,”
J. Biomech.
0021-9290,
17
(
5
), pp.
377
394
.
2.
Woo
,
S. L.-Y.
,
Mow
,
V. C.
, and
Lai
,
W. M.
, 1987, “
Biomechanical Properties of Articular Cartilage
,”
Handbook of Bioengineering
,
Skalak
,
R.
, and
Chien
,
S.
, eds.,
McGraw-Hill
,
New York
, pp.
4.1
4.44
.
3.
Soslowsky
,
L. J.
,
Ateshian
,
G. A.
, and
Mow
,
V. C.
, 1992, “
Quantitation of In Situ Contact Areas at the Glenohumeral Joint: A Biomechanical Study
,”
J. Orthop. Res.
0736-0266,
10
, pp.
524
534
.
4.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
, 1980, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
0148-0731,
102
, pp.
73
84
.
5.
Truesdell
,
C.
, and
Toupin
,
R. A.
, 1960, “
The Classical Field Theories
,”
Handbuck der physik
,
Flügge
,
S.
, editor,
Springer-Verlag
,
Berlin
.
6.
Armstrong
,
C. G.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1984, “
An Analysis of the Unconfined Compression of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
106
, pp.
165
173
.
7.
Mow
,
V. C.
,
Kwan
,
M. K.
,
Lai
,
W. M.
, and
Holmes
,
M. H.
, 1986, “
A Finite Deformation Theory for Nonlinearly Permeable Cartilage and Other Soft Hydrated Connective Tissues
,”
Frontiers in Biomechanics
,
Woo
,
S. L.-Y.
,
Schmid-Schonbein
,
G.
, and
Zweifach
,
B.
, eds.,
Springer-Verlag
,
Berlin
, pp.
153
179
.
8.
Kwan
,
M. K.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1990, “
A Finite Deformation Theory for Cartilage and Other Soft Hydrated Connective Tissues
,”
J. Biomech.
0021-9290,
23
, pp.
145
155
.
9.
Holmes
,
M. H.
, 1985, “
A Theoretical Analysis for Determining the Nonlinear Hydraulic Permeability of a Soft Tissue From a Permeation Experiment
,”
Bull. Math. Biol.
0092-8240,
47
(
5
), pp.
669
683
.
10.
Lai
,
W. M.
,
Mow
,
V. C.
, and
Roth
,
V.
, 1981, “
Effects of Nonlinear Strain-Dependent Permeability and Rate of Compression on the Stress Behavior of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
103
, pp.
61
66
.
11.
Mak
,
A. F.
, 1986, “
The Apparent Viscoelastic Behavior of Articular Cartilage—The Contributions From the Intrinsic Matrix Viscoelasticity and Interstitial Fluid Flows
,”
ASME J. Biomech. Eng.
0148-0731,
108
, pp.
123
130
.
12.
Cohen
,
B.
, 1992,
Anisotropic Hydrated Soft Tissues in Finite Deformation and the Biomechanics of the Growth Plates in Mechanical Engineering
,
Columbia University
,
New York
.
13.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
, 1991, “
A Triphasic Theory for the Swelling and Deformational Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
113
(
3
), pp.
245
258
.
14.
Huyghe
,
J. M.
, and
Janssen
,
J. D.
, 1997, “
Quadriphasic Mechanics of Swelling Incompressible Porous Media
,”
Int. J. Eng. Sci.
0020-7225,
35
(
8
), pp.
793
802
.
15.
Eberhardt
,
A. W.
,
Lewis
,
J. L.
, and
Keer
,
L. M.
, 1991, “
Normal Contact of Elastic Spheres With Two Elastic Layers as a Model of Joint Articulation
,”
ASME J. Biomech. Eng.
0148-0731,
113
, pp.
410
417
.
16.
Ateshian
,
G. A.
,
Lai
,
W. M.
,
Zhu
,
W. B.
, and
Mow
,
V. C.
, 1994, “
An Asymptotic Solution for the Contact of Two Biphasic Cartilage Layers
,”
J. Biomech.
0021-9290,
27
(
11
), pp.
1347
1360
.
17.
Hou
,
J. S.
,
Holmes
,
M. H.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1989, “
Boundary Conditions at the Cartilage-Synovial Fluid Interface for Joint Lubrication and Theoretical Verifications
,”
ASME J. Biomech. Eng.
0148-0731,
111
(
1
), pp.
78
87
.
18.
Donzelli
,
P. S.
, 1995,
A Mixed-Penalty Contact Finite Element Formulation for Biphasic Soft Tissues in Mechanical Engineering, Aeronautical Engineering and Mechanics
,
Rensselaer Polytechnic Institute
,
Troy, NY
.
19.
Almeida
,
E. S.
, and
Spilker
,
R. L.
, 1997, “
Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation—Part I: Alternate Formulations
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
1
, pp.
25
46
.
20.
Almeida
,
E. S.
, and
Spilker
,
R. L.
, 1998, “
Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation—Part II. Nonlinear Examples
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
1
, pp.
151
170
.
21.
Spilker
,
R. L.
, and
Suh
,
J.-K.
, 1990, “
Formulation and Evaluation of a Finite Element Model of Soft Hydrated Tissue
,”
Comput. Struct.
0045-7949,
35
(
4
), pp.
425
439
.
22.
Suh
,
J.-K.
,
Spilker
,
R. L.
, and
Holmes
,
M. H.
, 1991, “
A Penalty Finite Element Analysis for Nonlinear Mechanics of Biphasic Hydrated Soft Tissue Under Large Deformation
,”
Int. J. Numer. Methods Eng.
0029-5981,
32
, pp.
1411
1439
.
23.
Spilker
,
R. L.
, and
Maxian
,
T. A.
, 1990, “
A Mixed-Penalty Finite Element Formulation of the Linear Biphasic Theory for Soft Tissues
,”
Int. J. Numer. Methods Eng.
0029-5981,
30
, pp.
1063
1082
.
24.
Oomens
,
C. W. J.
,
Van Campen
,
D. H.
, and
Grootenboer
,
H. J.
, 1987, “
A Mixture Approach to the Mechanics of Skin
,”
J. Biomech.
0021-9290,
20
(
9
), pp.
877
885
.
25.
Wayne
,
J. S.
,
Woo
,
S. L.-Y.
, and
Kwan
,
M. K.
, 1991, “
Application of the u-p Finite Element Method to the Study of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
113
(
4
), pp.
397
403
.
26.
Almeida
,
E. S.
, 1995,
Finite Element Formulations for Biological Soft Hydrated Tissues Under Finite Deformation, in Mechanical Engng, Aeronautical Engng and Mechanics
,
Rensselaer Polytechnic Institute
,
Troy, NY
.
27.
Vermilyea
,
M. E.
, and
Spilker
,
R. L.
, 1992, “
A Hybrid Finite Element Formulation of the Linear Biphasic Equations for Soft Hydrated Tissues
,”
Int. J. Numer. Methods Eng.
0029-5981,
33
, pp.
567
594
.
28.
Mish
,
K. D.
,
Herrmann
,
L. R.
, and
Muraleetharan
,
K.
, 1992, “
A Comparison of Biot Formulation Finite Element Models for Two- and Three-Dimensional Transient Soil Problems
,”
Symposium on Computational Mechanics of Porous Materials and Their Thermal Decomposition
,
Salamon
,
N. J.
, and
Sullivan
,
R. M.
, eds.,
ASME
,
New York
, pp.
69
79
.
29.
Simon
,
B. R.
,
Wu
,
J. S. S.
,
Zienkiewicz
,
O. C.
, and
Paul
,
D. K.
, 1986, “
Evaluation of U-W and U-P Finite Element Methods for the Dynamic Response of Saturated Porous Media Using One-Dimensional Models
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
10
, pp.
483
499
.
30.
Luenberger
,
D. G.
, 1984,
Linear and Nonlinear Programming
, 2nd ed.,
Addison-Wesley
,
Reading, MA
.
31.
Lipshitz
,
H.
, and
Glimcher
,
M. J.
, 1979, “
In Vitro Studies of the Wear of Articular Cartilage—II. Characteristics of the Wear of Articular Cartilage When Worn Against Stainless Steel Plates Having Characterized Surfaces
,”
Wear
0043-1648,
52
, pp.
297
339
.
32.
Lai
,
W. M.
, and
Mow
,
V. C.
, 1980, “
Drag-Induced Compression of Articular Cartilage During a Permeation Experiment
,”
Biorheology
0006-355X,
17
, pp.
111
123
.
33.
Yang
,
T. S.
, 2003,
A Three-Dimensional Biphasic Finite Element Contact Formulation for Hydrated Soft Tissue, in Mechanical, Aeronautical and Nuclear Engineering
,
Rensselaer Polytechnic Institute
,
Troy, NY
, p.
164
.
34.
Donzelli
,
P. S.
, and
Spilker
,
R. L.
, 1998, “
A Contact Finite Element Formulation for Biological Soft Hydrated Tissues
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
153
, pp.
63
79
.
35.
Yang
,
T. S.
, and
Spilker
,
R. L.
, 2006, “
A Patch Test for a Mixed Finite Element Approach for Three-Dimensional Contact of Biphasic Tissues
,”
ASME J. Biomech. Eng.
0148-0731 (in review).
36.
Taylor
,
R. L.
, and
Papadopoulos
,
P.
, 1991, “
On a Patch Test for Contact Problems in Two Dimensions
,”
Computational Methods in Nonlinear Mechanics
,
Wriggers
,
P.
, and
Wagner
,
W.
, eds.,
Springer
,
New York
, pp.
690
702
.
37.
Hughes
,
T. J. R.
, 1987,
The Finite Element Method: Linear Static and Dynamic Analysis
,
Prentice-Hall
,
Englewood Cliffs
, p.
803
.
38.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
, 1989,
The Finite Element Method
, 4th ed.,
McGraw-Hill
,
New York
, Vol.
I
, p.
648
.
39.
Heinstein
,
M. W.
,
Attaway
,
S. W.
,
Swegle
,
J. W.
, and
Mello
,
F. J.
, 1993, “
A General-Purpose Contact Detection Algorithm for Nonlinear Structural Analysis Codes
,” Sandia National Laboratories: Albuquerque.
40.
Oldenburg
,
M.
, and
Nilsson
,
L.
, 1994, “
The Position Code Algorithm for Contact Searching
,”
Int. J. Numer. Methods Eng.
0029-5981,
37
, pp.
359
386
.
41.
Yang
,
T. S.
, and
Spilker
,
R. L.
, 2007, “
A Study of Preconditioned Krylov Subspace Methods With Reordering for Linear Systems From a Biphasic v-p Finite Element Formulation
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
10
(
1
), pp.
13
24
.
42.
Mak
,
A. F.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1987, “
Biphasic Indentation of Articular Cartilage—Part I: Theoretical Analysis
,”
J. Biomech.
0021-9290,
20
, pp.
703
714
.
43.
Spilker
,
R. L.
,
Suh
,
J. K.
, and
Mow
,
V. C.
, 1992, “
A Finite Element Analysis of the Indentation Stress-Relaxation Response of Linear Biphasic Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
114
, pp.
191
201
.
44.
Suh
,
J.-K.
, and
Spilker
,
R. L.
, 1994, “
Indentation Analysis of Biphasic Articular Cartilage: Nonlinear Phenomena Under Finite Deformation
,”
ASME J. Biomech. Eng.
0148-0731,
116
, pp.
1
9
.
45.
Kelkar
,
R.
, and
Ateshian
,
G. A.
, 1995, “
Contact Creep Response Between a Rigid Impermeable Cylinder and a Biphasic Cartilage Layer Using Integral Transforms, 1995 Bioengineering Conference
,”
Hochmuth
,
R. M.
,
Langrana
,
N. A.
, and
Hefzy
,
M. S.
, eds.,
ASME
, New York.
46.
Kelkar
,
R.
, and
Ateshian
,
G. A.
, 1999, “
Contact Creep of Biphasic Cartilage Layers
,”
ASME J. Biomech. Eng.
0148-0731,
66
, pp.
137
145
.
47.
Soslowsky
,
L. J.
,
Ateshian
,
G. A.
, and
Mow
,
V. C.
, 2001, “
Stereophotogrammetric Determination of Joint Anatomy and Contact Areas
,”
Biomechanics of Diarthrodial Joints
,
Mow
,
V. C.
,
Ratcliffe
,
T. A.
, and
Woo
,
S. L.-Y.
, eds.,
Springer-Verlag
,
Berlin
, pp.
243
268
.
48.
Dunbar
,
W. L.
,
Un
,
K.
,
Donzelli
,
P. S.
, and
Spilker
,
R. L.
, 2001, “
An Evaluation of Three Dimensional Diarthrodial Joint Contact Using Penetration Data and the Finite Element Method
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
333
340
.
49.
Ün
,
K.
, and
Spilker
,
R. L.
, 2006, “
A Penetration-Based Finite Element Method for Hyperelastic 3-D Biphasic Tissues in Contact—Part I: Derivation of Contact Boundary Conditions
,”
ASME J. Biomech. Eng.
0148-0731,
128
, pp.
124
130
.
50.
Ün
,
K.
, and
Spilker
,
R. L.
, 2006, “
A Patch Test for a Mixed Finite Element Approach for Three-Dimensional Contact of Biphasic Tissues
,”
ASME J. Biomech. Eng.
0148-0731 (in review).
You do not currently have access to this content.