Reactive gas uptake is predicted and compared in a single bifurcation at steady expiratory flow in terms of Sherwood number using an axisymmetric single-path model (ASPM) and a three-dimensional computational fluid dynamics model (CFDM). ASPM is validated in a two-generation geometry by comparing the average gas-phase mass transfer coefficients with the experimental values. ASPM predicted mass transfer coefficients within 20% of the experimental values. The flow and concentration variables in the ASPM were solved using Galerkin finite element method and in the CFDM using commercial finite element software FIDAP. The simulations were performed for reactive gas flowing at Reynolds numbers ranging from 60 to 350 in both symmetric bifurcation for three bifurcation angles, 30deg, 70deg, and 90deg, and in an asymmetric bifurcation. The numerical models compared with each other qualitatively but quantitatively they were within 0.4–8% due to nonfully developed flow in the parent branch predicted by the CFDM. The radially averaged concentration variation along the axial location matched qualitatively between the CFDM and ASPM but quantitatively they were within 32% due to differences in the flow field. ASPM predictions compared well with the CFDM predictions for an asymmetric bifurcation. These results validate the simplified ASPM and the complex CFDM. ASPM predicts higher Sherwood number with a flat velocity inlet profile compared to a parabolic inlet velocity profile. Sherwood number increases with the inlet average velocity, wall mass transfer coefficient, and bifurcation angle since the boundary layer grows slower in the parent and daughter branches.

1.
Martonen
,
T. B.
,
Guan
,
X.
, and
Shreck
,
R. M.
, 2001, “
Fluid Dynamics in Airway Bifurcations: I. Primary Flows
,”
Inhalation Toxicol.
0895-8378,
13
, pp.
261
279
.
2.
Martonen
,
T. B.
,
Guan
,
X.
, and
Shreck
,
R. M.
, 2001, “
Fluid Dynamics in Airway Bifurcations: II. Secondary Currents
,”
Inhalation Toxicol.
0895-8378,
13
, pp.
281
289
.
3.
Martonen
,
T. B.
,
Guan
,
X.
, and
Shreck
,
R. M.
, 2001, “
Fluid Dynamics in Airway Bifurcations: III. Localized Flow Conditions
,”
Inhalation Toxicol.
0895-8378,
13
, pp.
291
305
.
4.
Yung
,
C. N.
,
De Witt
,
K. J.
, and
Keith
, Jr.,
T. G.
, 1990, “
Three-Dimensional Steady Flow Through a Bifurcation
,”
ASME J. Biomech. Eng.
0148-0731,
112
, pp.
189
197
.
5.
Balashazy
,
I.
, and
Hofman
,
W.
, 1993, “
Particle Deposition in Airway Bifurcations—I. Inspiratory Flow
,”
J. Aerosol Sci.
0021-8502,
24
, pp.
745
772
.
6.
Zhao
,
Y.
, and
Lieber
,
B. B.
, 1994, “
Steady Inspiratory Flow in a Model Symmetric Bifurcation
,”
ASME J. Biomech. Eng.
0148-0731,
116
, pp.
488
496
.
7.
Gatlin
,
B.
,
Cuicchi
,
C. E.
,
Hammersley
,
J. R.
,
Olson
,
D. E.
,
Reddy
,
R. N.
, and
Burnside
,
G. G.
, 1995, “
Computational Simulation of Steady and Oscillating Flow in Branching Tubes
,”
ASME Bio-Medical, Fluids. Engineering. FED
,
212
, pp.
1
8
.
8.
Zhao
,
Y.
,
Brunskill
,
C. T.
, and
Lieber
,
B. B.
, 1997, “
Inspiratory and Expiratory Steady Flow Analysis in a Model Symmetrically Bifurcating Airway
,”
ASME J. Biomech. Eng.
0148-0731,
119
(
1
), pp.
52
58
.
9.
Balashazy
,
I.
, and
Hoffman
,
W.
, 1993, “
Particle Deposition in Airway Bifurcations—II. Expiratory Flow
,”
J. Aerosol Sci.
0021-8502,
24
, pp.
773
786
.
10.
Schroter
,
R. C.
, and
Sudlow
,
M. F.
, 1969, “
Flow Patterns in Models of the Human Bronchial Airways
,”
Respir. Physiol.
0034-5687,
7
(
3
), pp.
341
355
.
11.
Zhao
,
Y.
, and
Lieber
,
B. B.
, 1994, “
Steady Expiratory Flow in a Model Symmetric Bifurcation
,”
ASME J. Biomech. Eng.
0148-0731,
116
(
3
), pp.
318
323
.
12.
Asgharian
,
B.
, and
Anjivel
,
S.
, 1994, “
Inertial and Gravitational Deposition of Particles in a Square Cross Section Bifurcating Airway
,”
Aerosol Sci. Technol.
0278-6826,
20
, pp.
177
193
.
13.
Plopper
,
C. G.
,
Hatch
,
G. E.
,
Wong
,
V.
,
Duan
,
X.
,
Wier
,
A. J.
,
Tarkington
,
B. K.
,
Devlin
,
R. B.
,
Becker
,
S.
, and
Buckpitt.
,
A. R.
, 1998, “
Relationship of Inhaled Ozone Concentration to Acute Tracheobronchial Epithelial Injury, Site-Specific Ozone Dose, and Glutathione Depletion in Rhesus Monkeys
,”
Am. J. Respir. Cell Mol. Biol.
1044-1549,
19
, pp.
387
399
.
14.
Postlethwait
,
E. M.
,
Joad
,
J. P.
,
Hyde
,
D. M.
,
Schelegle
,
E. S.
,
Bric
,
J. M.
,
Weir
,
A. J.
,
Putney
,
L. F.
,
Wong
,
V. J.
,
Velsor
,
L. W.
, and
Plopper
,
C. G.
, 2000, “
Three-Dimensional Mapping of Ozone-Induced Acute Cytotoxicity in Tracheobronchial Airways of Isolated Perfused Rat Lung
,”
Am. J. Respir. Cell Mol. Biol.
1044-1549,
22
, pp.
191
199
.
15.
Joad
,
J. P.
,
Bric
,
J. M.
,
Weir
,
A. J.
,
Putney
,
L. F.
,
Hyde
,
D. M.
,
Postlethwait
,
E. M.
, and
Plopper
,
C. G.
, 2000, “
Effect of Respiratory Pattern on Ozone Injury to the Airways of Isolated Rat Lungs
,”
Toxicol, Appl. Pharmocol.
,
169
, pp.
26
32
.
16.
Madasu
,
S.
,
Borhan
,
A.
, and
Ultman
,
J. S.
, 2006, “
An Axisymmetric Single Path Model for Gas Transport in the Conducting Airways
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
1
), pp.
69
75
.
17.
Madasu
,
S.
,
Borhan
,
A.
, and
Ultman
,
J. S.
, 2007 “
Gas Uptake in a Three-Generation Model Geometry With a Flat Inlet Velocity Profile During Steady Inspiration: Comparison of Axisymmetric and Three-Dimensional Models
,”
Inhalation Toxicol.
0895-8378,
19
(
6&7
), pp.
495
503
.
18.
Madasu
,
S.
,
Borhan
,
A.
, and
Ultman
,
J. S.
, 2007, “
Gas Uptake in a Three-Generation Model Geometry During Steady Expiration: Comparison of Axisymmetric and Three-Dimensional Models
,”
Inhalation Toxicol.
0895-8378,
19
(
3
), pp.
199
210
.
19.
Miller
,
F. J.
,
Overton
,
J. H.
,
Jaskot
,
R. J.
, and
Menzel
,
D. B.
, 1985, “
A Model of the Regional Uptake of Gaseous Pollutants in the Lung. I. The Sensitivity of the Uptake of Ozone in the Human Lung to Lower Respiratory Tract Secretions and Exercise
,”
Toxicol. Appl. Pharmacol.
0041-008X,
79
, pp.
11
27
.
20.
Grotberg
,
J. B.
,
Seth
,
B. V.
, and
Mockros
,
L. F.
, 1990, “
An Analysis of Pollutant Gas Transport and Absorption in Pulmonary Airways
,”
ASME J. Biomech. Eng.
0148-0731,
112
, pp.
168
176
.
21.
Hu
,
S. C.
,
Jebria
,
A. B.
, and
Ultman
,
J. S.
, 1992, “
Simulation of Ozone Uptake Distribution in the Human Airways by Orthogonal Collocation on Finite Elements
,”
Comput. Biomed. Res.
0010-4809,
25
, pp.
264
278
.
22.
Nuckols
,
M. L.
, 1981, “
Heat and Water Vapor Transfer in the Human Respiratory System at Hyperbaric conditions
,” Ph.D. thesis, Duke University, Durham, NC.
23.
Weibel
,
E. R.
, 1963,
Morphometry of the Human Lung
,
Academic
,
New York
.
24.
Ultman
,
J. S.
, 1985, “
Gas Transport in the Conducting Airways
,”
Gas Mixing and Distribution in the Lung
,
L. A.
Engel
and
M.
Paiva
,
Dekker
,
New York
, pp.
63
136
.
25.
Spencer
,
R. M.
,
Schroeter
,
J. D.
, and
Martonen
,
T. B.
, 2001, “
Computer Simulations of Lung Airway Structures Using Data-Driven Surface Modeling Techniques
,”
Comput. Biomed. Res.
0010-4809,
31
, pp.
499
511
.
26.
Nowak
,
N.
,
Kakade
,
P. K.
, and
Annapragada
,
A. V.
, 2003, “
Computational Fluid Dynamics Simulation of Airflow and Aerosol Deposition in Human Lungs
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
374
390
.
27.
Sackinger
,
P. A.
,
Schunk
,
P. R.
, and
Rao
,
R. R.
, 1996, “
A Newton-Raphson Pseudo-Solid Domain Mapping Technique for Free and Moving Boundary Problems: A Finite Element Implementation
,”
J. Comput. Phys.
0021-9991,
125
, pp.
83
103
.
28.
Kundert
,
K. S.
, and
Vincentelli
,
A. S.
, 1988,
A Sparse Linear Equation Solver
,
University of California
,
Berkeley
, Version 1.3a.
29.
Oden
,
J. T.
, and
Carey
,
G. F.
, 1983,
Finite Elements: Mathematical Aspects
,
Prentice Hall
,
Englewood cliffs, NJ
, Vol.
IV
.
30.
Horsfield
,
K.
, and
Cumming.
,
G.
, 1968, “
Morphology of the Bronchial Tree in Man
,”
J. Appl. Physiol.
0021-8987,
24
, pp.
373
383
.
You do not currently have access to this content.