Epidemiological studies show that tibial plateau fractures comprise about 10% of all below-knee injuries in car crashes. Studies from this laboratory document that impacts to the tibiofemoral (TF) joint at 50% of the energy producing gross fracture can generate cartilage damage and microcracks at the interface between calcified cartilage and underlying subchondral bone in the tibial plateau. These injuries are suggestive of the initiation for a long term chronic disease, such as osteoarthritis. The disease process may be further encouraged by acute damage to chondrocytes in the cartilage overlying areas of occult microcracking. The hypothesis of the current study was that significant damage to chondrocytes in tibial plateau cartilage could be generated in areas of high contact pressure by a single impact delivered to the rabbit TF joint, without a gross fracture of bone. Three rabbits received a single, 13J of energy blunt insult to the TF joint, while another three animals were used as controls. Cell viability analyses compared chondrocyte damage in impacted versus control cartilage. Two additional rabbits were impacted to document contact pressures generated in the TF joint. The study showed high contact pressures in uncovered areas of the plateau, with a trend for higher pressures in the lateral versus medial facets. A significantly higher percentage of damaged chondrocytes existed in impacted versus the opposite, nonimpacted limbs. Additionally, more chondrocyte damage was documented in the superficial zone (top 20% of cartilage thickness) of the cartilage compared to middle (middle 50% of thickness) and deep (bottom 30% of thickness) zones. This study showed that a single blunt insult to the in situ rabbit TF joint, generating large areas of contact pressure exceeding 20MPa, produces significant chondrocyte damage in the tibial articular cartilage, especially in the superficial zone, without gross fracture of bone. Future studies will be needed to investigate the long term, chronic outcome of this blunt force joint trauma.

1.
Atkinson
,
T.
, and
Atkinson
,
P.
, 2000, “
Knee Injuries in Motor Vehicle Collisions: A Study of the National Accident Sampling System Database for the Years 1979–1995
,”
Accid. Anal Prev.
0001-4575,
32
, pp.
779
786
.
2.
Taylor
,
A.
,
Morris
,
A.
,
Thomas
,
P.
, and
Wallace
,
A.
, 1997, “
Mechanisms of Lower Extremity Injuries to Front Seat Car Occupants—An in Depth Accident Analysis
,”
Proceedings of the 1997 International Conference Biomech. Impact
,
Hannover, Germany
, pp.
53
72
.
3.
Sherwood
,
C.
,
O’Neill
,
B.
, and
Hurwitz
,
S.
, 1999, “
Lower extremity Causation in Frontal Crashes
,”
Proceedings of the 1999 International Conference Biomech. Impact
,
Sitges
,
Spain
, pp.
513
524
.
4.
Funk
,
J. R.
,
Tourret
,
L. J.
, and
Crandall
,
J. R.
, 2000, “
Experimentally Produced Tibial Plateau Fractures
,” International IROCBI Conference on the Biomechanics of Impact, Montpeller, France, pp.
171
182
, ISBN 2-9514210-1-X.
5.
Banglmaier
,
R. F.
,
Dvoracek-Driksna
,
D.
,
Oniang’o
,
T. E.
, and
Haut
,
R. C.
, 1999 “
Axial Compressive Load Response of the 90° Flexed Human Tibiofemoral Joint
,”
43rd Stapp Car Crash Conference Proceedings
, pp.
127
139
.
6.
Atkinson
,
P. J.
,
Cooper
,
T. G.
,
Anseth
,
S.
,
Walter
,
N. E.
,
Kargus
,
R.
, and
Haut
,
R. C.
, 2008, “
Knee Bone Bruise Frequencies Vary With Time Post-Injury and Type of Soft Tissue Injury
,”
Orthopedics
0147-7447,
31
, p.
440
.
7.
Johnson
,
D. L.
,
Urban
,
W. P.
,
Caborn
,
D. N. M.
,
Vanarthos
,
W. J.
, and
Carlson
,
C. S.
, 1998, “
Articular Cartilage Changes Seen With Magnetic Resonance Imaging-Detected Bone Bruises Associated With Acute Anterior Cruciate Ligament Rupture
,”
Am. J. Sports Med.
0363-5465,
26
, pp.
409
414
.
8.
Bahr
,
R.
, and
Myklebust
,
G.
, 2005, “
Return to Play Guidelines After Anterior Cruciate Ligament Surgery
,”
Br. J. Sports Med.
0306-3674,
39
, pp.
127
131
.
9.
Ewers
,
B. J.
,
Weaver
,
B. T.
,
Sevensma
,
E. T.
, and
Haut
,
R. C.
, 2002, “
Chronic Changes in Rabbit Retro-Patellar Cartilage and Subchondral Bone After Blunt Impact Loading of the Patello-Femoral Joint
,”
J. Orthop. Res.
0736-0266,
20
, pp.
545
550
.
10.
Pritzker
,
K. P. H.
, 1998, “
Pathology of osteoarthritis
,” in
Osteoarthritis
,
K. D.
Brandt
,
M.
Doherty
, and
L. S.
Lohmander
, eds.,
Oxford University Press
,
New York
, Chap. 5, pp.
50
61
.
11.
Rundell
,
S. A.
,
Baars
,
D. C.
,
Phillips
,
D. M.
, and
Haut
,
R. C.
, 2005, “
The Limitation of Acute Necrosis in Retro-Patellar Cartilage After a Severe Blunt Impact to the In-Vivo Rabbit Patello-Femoral Joint
,”
J. Orthop. Res.
0736-0266,
23
, pp.
1363
1369
.
12.
Colwell
,
C. W.
,
D’Lima
,
D. D.
,
Hoenecke
,
H. R.
,
Fronek
,
J.
,
Pulido
,
P.
,
Morris
,
B. A.
,
Chung
,
C.
,
Resnick
,
D.
, and
Lotz
,
M.
, 2001, “
In Vivo Changes After Mechanical Injury
,”
Clin. Orthop. Relat. Res.
0009-921X,
391S
, pp.
S116
S123
.
13.
Blanco
,
F. J.
,
Guitian
,
R.
,
Vazquez-Martul
,
E.
,
DeToro
,
F. J.
, and
Galdo
,
F.
, 1998, “
Osteoarthritis Chondrocytes Die by Apoptosis-A Possible Pathway for OA Pathology
,”
Arthritis Rheum.
0004-3591,
41
(
2
), pp.
284
289
.
14.
Meyer
,
E. G.
, 2004, “
Biomechanical Response of Tissues to Various Blunt Impact Orientations
,” M.S. thesis, Michigan State University, East Lansing, MI.
15.
Atkinson
,
P. J.
,
Newberry
,
W. N.
,
Atkinson
,
T. S.
, and
Haut
,
R. C.
, 1998, “
A Method to Increase the Sensitive Range of Pressure Sensitive Film
,”
J. Biomech.
0021-9290,
31
, pp.
855
859
.
16.
Ewers
,
B.
,
Krueger
,
J.
,
Dvoracek-Dricksna
,
D.
,
Orth
,
M.
, and
Haut
,
R.
, 2001, “
Chondrocyte Viability Decreases Over 24Hours Post-Impact in a Mechanically Traumatized Cartilage Explant
,”
47th Mtging Orthop. Res. Society
.
17.
Phillips
,
D. M.
, and
Haut
,
R. C.
, 2004, “
The Use of a Non-Ionic Surfactant (P188) to Save Chondrocytes from Necrosis Following Impact Loading of Chondral Explants
,”
J. Orthop. Res.
0736-0266,
22
, pp.
1135
1142
.
18.
Torzilli
,
P. A.
,
Grigiene
,
R.
,
Borrelli
,
J.
, Jr.
, and
Helfet
,
D. L.
, 1999, “
Effect of Impact Load on Articular Cartilage: Cell Metabolism and Viability, and Matrix Water Content
,”
ASME J. Biomech. Eng.
0148-0731,
121
, pp.
433
441
.
19.
Repo
,
R.
, and
Finlay
,
J.
, 1977, “
Survival of Articular Cartilage After Controlled Impact
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
59-A
(
8
), pp.
1068
1076
.
20.
Newberry
,
W. N.
,
Garcia
,
J. J.
,
Mackenzie
,
C. D.
,
Decamp
,
C. E.
, and
Haut
,
R. C.
, 1998, “
Analysis of Acute Mechanical Insult in an Animal Model of Post-Traumatic Osteoarthrosis
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
704
709
.
21.
Krueger
,
J. A.
,
Thisse
,
P.
,
Ewers
,
B. J.
,
Dvoracek-Driksna
,
D.
,
Orth
,
M. W.
, and
Haut
,
R. C.
, 2003, “
The Extent and Distribution of Cell Death and Matrix Damage in Impacted Chondral Explants Varies With the Presence of Underlying Bone
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
1
6
.
22.
Milentijevic
,
D.
,
Rubel
,
I. F.
,
Liew
,
A. S. L.
,
Helfet
,
D. L.
, and
Torzilli
,
P. A.
, 2005, “
An In Vivo Rabbit Model for Cartilage Trauma. A Preliminary Study of the Influence of Impact Stress Magnitude on Chondrocyte Death and Matrix Damage
,”
J. Orthop. Trauma
0890-5339,
19
, pp.
466
473
.
23.
Wu
,
J. Z.
,
Herzog
,
W.
, and
Epstein
,
M.
, 1998, “
Effects of Inserting Pressensor Film Into Articular Joints on the Actual Contact Mechanics
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
655
659
.
24.
Atkinson
,
P. J.
, and
Haut
,
R. C.
, 2001, “
Impact Responses of the Flexed Human Knee Using a Deformable Impact Interface
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
3
), pp.
205
211
.
25.
Roach
,
H. I.
, and
Clarke
,
N. M. P.
, 2000, “
Physiological Cell Death of Chondrocytes In Vivo is not Confined to Apoptosis: New Observations on the Mammalian Growth Plate
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
82
, pp.
601
613
.
You do not currently have access to this content.