A new methodology for a swift and accurate computer simulation of large segments of the human lung airways is presented. Focusing on a representative tracheobronchial (TB) region, i.e., G0–G15, nano- and micron particle transports have been simulated for Qin=30lmin, employing an experimentally validated computer model. The TB tree was geometrically decomposed into triple-bifurcation units with kinematically adjusted multilevel outlet/inlet conditions. Deposition patterns and maximum concentrations differ greatly between nanoparticles (1dp150nm) and micron particles (1dp10μm), which may relate uniquely to health impacts. In comparison with semi-analytical particle deposition results, it is shown that such simple “lung models” cannot predict local deposition values but can match computer simulation results for the entire TB region within 2.5–26%. The present study revealed that turbulent air-particle flow may propagate to G5 for the assumed inhalation flow rate. Geometry and upstream effects are more pronounced for micron particle deposition than for nanoparticle deposition.

1.
Kleinstreuer
,
C.
,
Zhang
,
Z.
, and
Li
,
Z.
, 2008, “
Modeling Airflow and Particle Transport/Deposition in Pulmonary Airways
,”
Respir. Physiol. Neurbiol.
1569-9048, doi: 10.1016/j.resp.2008.07.002
2.
Finlay
,
W. H.
, 2001,
The Mechanics of Inhaled Pharmaceutical Aerosols: An Introduction
,
Academic
,
London, UK
.
3.
National Council on Radiation Protection and Measurements
(NCRP), 1997, “
Deposition, Retention, and Dosimetry of Inhaled Radioactive Substances
,”
National Council on Radiation Protection and Measurements
,
Bethesda
, MD, Report No., 125.
4.
National Institute for Public Health and the Environment
(RIVM), 2002, “
Multiple Path Particle Dosimetry Model (MPPD v 1.0): A Model for Human and Rat Airway Particle Dosimetry
,”
Bilthoven
, The Netherlands, RIVA Report No. 650010030.
5.
International Commission on Radiolocial Protection
(ICRP), 1994, “
Human Respiratory Tract Model for Radiological Protection
,”
Ann. ICRP
0146-6453,
66
, pp.
36
54
.
6.
Mitsakou
,
C.
,
Helmis
,
C.
, and
Housiadas
,
C.
, 2005, “
Eulerian Modelling of Lung Deposition With Sectional Representation of Aerosol Dynamics
,”
J. Aerosol Sci.
0021-8502,
36
(
1
), pp.
75
94
.
7.
Choi
,
J. I.
, and
Kim
,
C. S.
, 2007, “
Mathematical Analysis of Particle Deposition in Human Lungs: An Improved Single Path Transport Model
,”
Inhalation Toxicol.
0895-8378,
19
(
11
), pp.
925
939
.
8.
Kleinstreuer
,
C.
, and
Zhang
,
Z.
, 2003, “
Laminar-to-Turbulent Fluid-Particle Flows in a Human Airway Model
,”
Int. J. Multiphase Flow
0301-9322,
29
(
2
), pp.
271
289
.
9.
Zhang
,
Z.
,
Kleinstreuer
,
C.
, and
Kim
,
C. S.
, 2002, “
Cyclic Micron-Size Particle Inhalation and Deposition in a Triple Bifurcation Lung Airway Model
,”
J. Aerosol Sci.
0021-8502,
33
(
2
), pp.
257
281
.
10.
Farkas
,
A.
, and
Balashazy
,
I.
, 2007, “
Simulation of the Effect of Local Obstructions and Blockage on Airflow and Aerosol Deposition in Central Human Airways
,”
J. Aerosol Sci.
0021-8502,
38
(
8
), pp.
865
884
.
11.
Zhang
,
Z.
,
Kleinstreuer
,
C.
,
Donohue
,
J. F.
, and
Kim
,
C. S.
, 2005, “
Comparison of Micro- and Nano-Size Particle Depositions in a Human Upper Airway Model
,”
J. Aerosol Sci.
0021-8502,
36
(
2
), pp.
211
233
.
12.
Weibel
,
E. R.
, 1963,
Morphometry of the Human Lung
,
Academic
,
New York
.
13.
Martonen
,
T. B.
,
Yang
,
Y.
, and
Xue
,
Z. Q.
, 1994, “
Influences of Cartilaginous Rings on Tracheobronchial Fluid-Dynamics
,”
Inhalation Toxicol.
0895-8378,
6
(
3
), pp.
185
198
.
14.
Zhang
,
Y.
, and
Finlay
,
W. H.
, 2005, “
Measurement of the Effect of Cartilaginous Rings on Particle Deposition in a Proximal Lung Bifurcation Model
,”
Aerosol Sci. Technol.
0278-6826,
39
(
5
), pp.
394
399
.
15.
Nowak
,
N.
,
Kakade
,
P. P.
, and
Annapragada
,
A. V.
, 2003, “
Computational Fluid Dynamics Simulation of Airflow and Aerosol Deposition in Human Lungs
,”
Ann. Biomed. Eng.
0090-6964,
31
(
4
), pp.
374
390
.
16.
Li
,
Z.
,
Kleinstreuer
,
C.
, and
Zhang
,
Z.
, 2007, “
Particle Deposition in the Human Tracheobronchial Airways Due to Transient Inspiratory Flow Patterns
,”
J. Aerosol Sci.
0021-8502,
38
(
6
), pp.
625
644
.
17.
Li
,
Z.
,
Kleinstreuer
,
C.
, and
Zhang
,
Z.
, 2007, “
Simulation of Airflow Fields and Microparticle Deposition in Realistic Human Lung Airway Models. Part I: Airflow Patterns
,”
Eur. J. Mech. B/Fluids
0997-7546,
26
, pp.
632
649
.
18.
Li
,
Z.
,
Kleinstreuer
,
C.
, and
Zhang
,
Z.
, 2007, “
Simulation of Airflow Fields and Microparticle Deposition in Realistic Human Lung Airway Models. Part II: Particle Transport and Deposition
,”
Eur. J. Mech. B/Fluids
0997-7546,
26
, pp.
650
668
.
19.
Wilcox
,
D. C.
, 1998,
Turbulence Modeling for CFD
,
DCW Industries
,
Inc., La Cañada, CA
.
20.
Zhang
,
Z.
, and
Kleinstreuer
,
C.
, 2003, “
Low-Reynolds-Number Turbulent Flows in Locally Constricted Conduits: A Comparison Study
,”
AIAA J.
0001-1452,
41
(
5
), pp.
831
840
.
21.
Varghese
,
S. S.
, and
Frankel
,
S. H.
, 2003, “
Numerical Modeling of Pulsatile Turbulent Flow in Stenotic Vessels
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
4
), pp.
445
460
.
22.
Zhang
,
Z.
, and
Kleinstreuer
,
C.
, 2003, “
Species Heat and Mass Transfer in a Human Upper Airway Model
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
25
), pp.
4755
4768
.
23.
Kleinstreuer
,
C.
,
Zhang
,
Z.
, and
Kim
,
C. S.
, 2007, “
Combined Inertial and Gravitational Deposition of Microparticles in Small Model Airways of Human Respiratory System
,”
J. Aerosol Sci.
0021-8502,
38
, pp.
1047
1061
.
24.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
, 1978,
Bubbles, Drops, and Particles
,
Academic
,
New York
.
25.
Matida
,
E. A.
,
Finlay
,
W. H.
,
Lange
,
C. F.
, and
Grgic
,
B.
, 2004, “
Improved Numerical Simulation of Aerosol Deposition in an Idealized Mouth-Throat
,”
J. Aerosol Sci.
0021-8502,
35
(
1
), pp.
1
19
.
26.
Longest
,
P. W.
, and
Oldham
,
M. J.
, 2008, “
Numerical and Experimental Deposition of Fine Respiratory Aerosols: Development of a Two-Phase Drift Flux Model With Near-Wall Velocity Corrections
,”
J. Aerosol Sci.
0021-8502,
39
(
1
), pp.
48
70
.
27.
Cheng
,
Y. S.
,
Yamada
,
Y.
,
Yeh
,
H. C.
, and
Swift
,
D. L.
, 1988, “
Diffusional Deposition of Ultrafine Aerosols in a Human Nasal Cast
,”
J. Aerosol Sci.
0021-8502,
19
(
6
), pp.
741
751
.
28.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
, 1978,
Bubbles, Drops, and Particles
,
Academic
,
New York
.
29.
Zhang
,
Z.
,
Kleinstreuer
,
C.
, and
Kim
,
C. S.
, 2006, “
Transport and Uptake of MTBE and Ethanol Vapors in a Human Upper Airway Model
,”
Inhalation Toxicol.
0895-8378,
18
(
3
), pp.
169
184
.
30.
Fan
,
B. J.
,
Cheng
,
Y. S.
, and
Yeh
,
H. C.
, 1996, “
Gas Collection Efficiency and Entrance Flow Effect of an Annular Diffusion Denuder
,”
Aerosol Sci. Technol.
0278-6826,
25
(
2
), pp.
113
120
.
31.
Goo
,
J.
, and
Kim
,
C. S.
, 2003, “
Theoretical Analysis of Particle Deposition in Human Lungs Considering Stochastic Variations of Airway Morphology
,”
J. Aerosol Sci.
0021-8502,
34
(
5
), pp.
585
602
.
32.
Comer
,
J. K.
,
Kleinstreuer
,
C.
,
Hyun
,
S.
, and
Kim
,
C. S.
, 2000, “
Aerosol Transport and Deposition in Sequentially Bifurcating Airways
,”
ASME J. Biomech. Eng.
0148-0731,
122
, pp.
152
158
.
33.
Comer
,
J. K.
,
Kleinstreuer
,
C.
, and
Zhang
,
Z.
, 2001, “
Flow Structures and Particle Deposition Patterns in Double-Bifurcation Airway Models. Part 1. Air Flow Fields
,”
J. Fluid Mech.
0022-1120,
435
, pp.
25
54
.
34.
Zhang
,
Z.
, and
Kleinstreuer
,
C.
, 2002, “
Transient Airflow Structures and Particle Transport in a Sequentially Branching Lung Airway Model
,”
Phys. Fluids
1070-6631,
14
(
2
), pp.
862
880
.
35.
Shi
,
H.
,
Kleinstreuer
,
C.
,
Zhang
,
Z.
, and
Kim
,
C. S.
, 2004, “
Nanoparticle Transport and Deposition in Bifurcating Tubes With Different Inlet Conditions
,”
Phys. Fluids
1070-6631,
16
(
7
), pp.
2199
2213
.
36.
Zhang
,
Z.
,
Kleinstreuer
,
C.
, and
Kim
,
C. S.
, 2002, “
Gas-Solid Two-Phase Flow in a Triple Bifurcation Lung Airway Model
,”
Int. J. Multiphase Flow
0301-9322,
28
(
6
), pp.
1021
1046
.
37.
Lippmann
,
M.
, 1977, “
Regional Deposition of Particles in the Human Respiratory Tract
,”
Handbook of Physiology: Reaction to Environmental Agents
,
D. H. K.
Lee
,
H. L.
Falk
,
S. D.
Murphy
, and
S. R.
Geiger
, eds.,
American Physiology Society
,
Bethesda, MD
, pp.
213
232
.
38.
Foord
,
N.
,
Black
,
A.
, and
Walsh
,
M.
, 1978, “
Regional Deposition of 2.5–7.5μm Diameter Inhaled Particles in Healthy Male Non-Smokers
,”
J. Aerosol Sci.
0021-8502,
9
, pp.
343
357
.
39.
Chan
,
T. L.
, and
Lippmann
,
M.
, 1980, “
Experimental Measurements and Empirical Modeling of the Regional Deposition of Inhaled Particles in Humans
,”
Am. Ind. Hyg. Assoc. J.
0002-8894,
41
(
6
), pp.
399
408
.
40.
Emmett
,
P. C.
,
Aitken
,
R. J.
, and
Hannan
,
W. J.
, 1982, “
Measurements of the Total and Regional Deposition of Inhaled Particles in the Human Respiratory-Tract
,”
J. Aerosol Sci.
0021-8502,
13
(
6
), pp.
549
560
.
41.
Stahlhofen
,
W.
,
Rudolf
,
G.
, and
James
,
A. C.
, 1989, “
Intercomparison of Experimental Regional Aerosol Deposition Data
,”
Journal of Aerosol Medicine and Pulmonary Drug Delivery
,
2
, pp.
285
308
.
42.
Kim
,
C. S.
, and
Jaques
,
P. A.
, 2000, “
Respiratory Dose of Inhaled Ultrafine Particles in Healthy Adults
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
358
(
1775
), pp.
2693
2705
.
43.
Olson
,
D. E.
,
Dart
,
G. A.
, and
Filley
,
G. F.
, 1970, “
Pressure Drop and Fluid Flow Regime of Air Inspired into Human Lung
,”
J. Appl. Physiol.
0021-8987,
28
(
4
), pp.
482
494
.
44.
Olson
,
D. E.
,
Sudlow
,
M. F.
,
Horsfiel
,
K.
, and
Filley
,
G. F.
, 1973, “
Convective Patterns of Flow During Inspiration
,”
Arch. Intern Med.
0003-9926,
131
(
1
), pp.
51
57
.
45.
West
,
J. B.
, and
Hughjones
,
P.
, 1959, “
Patterns of Gas Flow in the Upper Bronchial Tree
,”
J. Appl. Physiol.
0021-8987,
14
(
5
), pp.
753
759
.
46.
Xi
,
J. X.
, and
Longest
,
P. W.
, 2007, “
Transport and Deposition of Micro-Aerosols in Realistic and Simplified Models of the Oral Airway
,”
Ann. Biomed. Eng.
0090-6964,
35
(
4
), pp.
560
581
.
47.
Xi
,
J. X.
, and
Longest
,
P. W.
, 2008, “
Effects of Oral Airway Geometry Characteristics on the Diffusional Deposition of Inhaled Nanoparticles
,”
ASME J. Biomech. Eng.
0148-0731,
130
(
4
), p.
011008
.
48.
Hoet
,
P.
,
Brueske-Hohlfeld
,
I.
, and
Salata
,
O.
, 2004, “
Nanoparticles: Known and Unknown Health Risks
,”
Journal of Nanobiotechnology
,
2
(
12
), pp.
1
15
.
49.
Oberdorster
,
G.
,
Oberdorster
,
E.
, and
Oberdorster
,
J.
, 2005, “
Nanotoxicology: An Emerging Discipline Evolving From Studies of Ultrafine Particles
,”
Environ. Health Perspect.
0091-6765,
113
(
7
), pp.
823
839
.
50.
Balashazy
,
I.
,
Hofmann
,
W.
, and
Heistracher
,
T.
, 2003, “
Local Particle Deposition Patterns May Play a Key Role in the Development of Lung Cancer
,”
J. Appl. Physiol.
8750-7587,
94
(
5
), pp.
1719
1725
.
You do not currently have access to this content.