This study proposes a mathematical model for studying stability of arteries subjected to a longitudinal extension and a periodic pressure. An artery was considered as a straight composite beam comprised of an external thick-walled tube and a fluid core. The dynamic criterion for stability was used, based on analyzing the small transverse vibrations superposed on the finite deformation of the vessel under static load. In contrast to the case of a static pressurization, in which buckling is only possible if the load produces a critical axial compressive force, a loss of stability of arteries under periodic pressure occurs under many combinations of load parameters. Instability occurs as a parametric resonance characterized by an exponential increase in the amplitude of transverse vibrations over several bands of pressure frequencies. The effects of load parameters were analyzed on the basis of the results for a dynamic and static stability of a rabbit thoracic aorta. Under normal physiological loads the artery is in a stable configuration. Static instability occurs under high distending pressures and low longitudinal stretch ratios. When the artery is subjected to periodic pressure, an independent increase in the mean pressure, amplitude of the periodic pressure, or frequency, most often, but not always, increases the risk of stability loss. In contrary, an increase in longitudinal stretch ratio most likely, but not certain, stabilizes the vessel. It was shown that adaptive geometrical remodeling due to an increase in mean pressure and flow does not affect artery stability.

1.
Han
,
H. -C.
, 2007, “
A Biomechanical Model of Artery Buckling
,”
J. Biomech.
,
40
, pp.
3672
3678
. 0021-9290
2.
Jackson
,
Z. C.
,
Dajnowiec
,
D.
,
Gotlieb
,
A. I.
, and
Langille
,
B. L.
, 2005, “
Partial Off-Loading of Longitudinal Tension Induces Arterial Tortuosity
,”
Arterioscler., Thromb., Vasc. Biol.
,
25
(
5
), pp.
957
962
. 1079-5642
3.
Seliktar
,
D.
,
Black
,
R. A.
,
Vito
,
R. P.
, and
Nerem
,
R. M.
, 2000, “
Dynamic Mechanical Conditioning of Collagen-Gel Blood Vessel Constructs Induces Remodeling In Vitro
,”
Ann. Biomed. Eng.
0090-6964,
28
(
4
), pp.
351
362
.
4.
Gleason
,
R. L.
,
Hu
,
J. J.
, and
Humphrey
,
J. D.
, 2004, “
Building a Functional Artery: Issues From the Perspective of Mechanics
,”
Front. Biosci.
1093-4715,
9
, pp.
2045
2055
.
5.
Rachev
,
A.
,
Felden
,
L.
, and
Ku
,
D. N.
, 2005, “
Design and Fabrication of Mechanics-Matching Arterial Grafts
,”
Summer Bioengineering Conference
.
6.
How
,
T. V.
, and
Clarke
,
R. M.
, 1984, “
The Elastic Properties of a Polyurethane Arterial Prosthesis
,”
J. Biomech.
,
17
(
8
), pp.
597
608
. 0021-9290
7.
Paidoussis
,
M. P.
, and
Li
,
G. X.
, 1993, “
Pipes Conveying Fluid: A Model Dynamical Problem
,”
J. Fluids Struct.
,
7
, pp.
137
204
. 0889-9746
8.
Harings
,
J. A.
, 1952, “
Instability of Thin-Walled Cylinders Subjected to Internal Pressure
,”
Philips Res. Rep.
0031-7918,
7
, pp.
112
118
.
9.
Naguleswaran
,
S.
, and
Williams
,
C. J. H.
, 1968, “
Lateral Vibrations of a Pipe Conveying Fluid
,”
J. Mech. Eng. Sci.
0022-2542,
10
, pp.
228
238
.
10.
Kamiya
,
A.
, and
Togawa
,
T.
, 1980, “
Adaptive Regulation of Wall Shear Stress to Flow Change in Canine Carotid Artery
,”
Am. J. Physiol.
,
239
, pp.
14
21
. 0002-9513
11.
Fung
,
Y. C.
, and
Liu
,
S. Q.
, 1989, “
Change of Residual Strains in Arteries Due to Hypertrophy Caused by Aortic Constriction
,”
Circ. Res.
,
65
, pp.
1340
1349
. 0002-9513
12.
Langille
,
B. L.
, 1993, “
Remodeling of Developing and Mature Arteries: Endothelium, Smooth Muscle and Matrix
,”
J. Cardiovasc. Pharmacol.
0160-2446,
21
(S11–S17), pp.
11
17
.
13.
Langille
,
B. L.
, 1995,
Blood Flow-Induced Remodeling of the Arterial Wall
,
Flow Dependent Regulation of Vascular Function
,
J. A.
Bevin
,
G. M.
Kayley
, and
G. M.
Rubanyi
, eds.,
Oxford University Press
,
New York
.
14.
Masuda
,
H.
,
Bassiiouny
,
H.
,
Glagov
,
S.
, and
Zarnis
,
C. K.
, 1989, “
Artery Wall Restructuring in Response to Increased Flow
,”
Surg. Forum
,
40
, pp.
285
286
. 0071-8041
15.
Humphrey
,
J. D.
, 2001,
Cardiovascular Solid Mechanics
,
Springer
,
New York
.
16.
Xie
,
W. -C.
, 2006,
Dynamic Stability of Structures
,
Cambridge University Press
,
Cambridge
.
17.
Ziegler
,
H.
, 1968,
Principles of Structural Stability
,
Blaisdell
,
Waltham, MA
.
18.
Strutt
,
M.
, 1932,
Lamesche, Mathieusche und verwandte Funktionen in Physik und Technik
,
Springer-Verlag
,
Berlin
.
19.
Bolotin
,
V. V.
, 1964,
The Dynamic Stability of Elastic Systems
,
Holden-Day
,
San Francisco, CA
.
20.
Matsumoto
,
T.
, and
Hayashi
,
K.
, 1994, “
Mechanical and Dimensional Adaptation of Rat Aorta to Hypertension
,”
ASME J. Biomech. Eng.
0148-0731,
116
, pp.
278
283
.
21.
Chuong
,
C. J.
, and
Fung
,
Y. C.
, 1986, “
On Residual Stress in Arteries
,”
ASME J. Biomech. Eng.
,
108
, pp.
189
192
. 0148-0731
22.
Vito
,
R.
, 2008, personal communication.
23.
Achakri
,
H.
,
Stergiopulos
,
N.
,
Rachev
,
A.
, and
Meister
,
J. J.
, 1995, “
Analysis of Diameter Variability of Muscular Artery During Contraction
,”
Arch. Physiol. Biochem.
,
103
(
3
), p.
43
. 1381-3455
24.
Quick
,
C. M.
,
Baldick
,
H. L.
,
Safabakhish
,
N.
,
Lenihan
,
T. J.
,
Li
,
J. K.
,
Weizsacker
,
H. W.
, and
Noordergraaf
,
A.
, 1996, “
Unstable Radii in Muscular Vessels
,”
Am. J. Physiol.
,
271
(
6
), Pt. 2, pp.
2669
2675
. 0002-9513
25.
Ku
,
D. N.
, 1997, “
Blood Flow in Arteries
,”
Annu. Rev. Fluid Mech.
0066-4189,
29
, pp.
399
434
.
26.
Milnor
,
W. R.
, 1989,
Hemodynamics
,
Williams & Wilkins
,
Hong Kong
.
27.
Rachev
,
A.
, 2003, “
Remodeling of Arteries in Response to Changes in Their Mechanical Environment
,”
Biomechanics of Soft Tissue in Cardiovascular Systems
(
CISM Courses and Lectures
No. 441),
G.
Holzapfel
and
R.
Ogden
, eds.,
Springer
,
Wien
, pp.
100
161
.
You do not currently have access to this content.