A major challenge encountered in using electrospun scaffolds for tissue engineering is the non-uniform cellular distribution in the scaffold with increasing depth under normal passive seeding conditions. Because of the small surface pores, typically few microns in diameter, cells tend to congregate and proliferate on the surface much faster compared to penetrating the scaffold interior. In order to overcome this problem, we used a vacuum seeding technique on polycaprolactone electrospun scaffolds while using NIH 3T3 fibroblasts as the model cell system. This serves as a precursor to the bilayer skin model where the fibroblasts would be residing at an intermediate layer and the keratinocytes would be on the top. Vacuum seeding was used in this study to enhance fibroblasts seeding and proliferation at different depths. Our results show that the kinetics of cell attachment and proliferation were a function of varying vacuum pressure as well as fiber diameter. Cell attachment reached a maxima somewhere between 2–8 in. Hg vacuum pressure and fell for lower vacuum pressures presumably because of cell loss through the filtration process. Cell proliferation and collagen secretion over five days indicated that vacuum pressure did not affect cellular function adversely. We also compared the combined impact of scaffold architecture (400 nm versus 1100 nm average diameter fiber scaffolds) and vacuum pressure. At a given pressure, more cells were retained in the 400 nm scaffolds compared to 1100 nm scaffolds. In addition, the cell intensity profile shows cell intensity peak shift from the top to the inner layers of the scaffold by lowering the vacuum pressure from 0 in. Hg to 20 in. Hg. For a given vacuum pressure the cells were seeded deeper within the 1100 nm scaffold. The results indicate that cells can be seeded in electrospun scaffolds at various depths in a controlled manner using a simple vacuum seeding technique. The depth of seeding is a function of pressure and scaffold fiber diameter.

1.
Xu
,
C. Y.
,
Inai
,
R.
,
Kotaki
,
M.
, and
Ramakrishna
,
S.
, 2004, “
Aligned Biodegradable Nanofibrous Structure: A Potential Scaffold for Blood Vessel Engineering
,”
Biomaterials
0142-9612,
25
(
5
), pp.
877
886
.
2.
Xu
,
C.
,
Inai
,
R.
,
Kotaki
,
M.
, and
Ramakrishna
,
S.
, 2004, “
Electrospun Nanofiber Fabrication as Synthetic Extracellular Matrix and Its Potential for Vascular Tissue Engineering
,”
Tissue Eng.
1076-3279,
10
(
7–8
), pp.
1160
1168
.
3.
Katti
,
D. S.
,
Robinson
,
K. W.
,
Ko
,
F. K.
, and
Laurencin
,
C. T.
, 2004, “
Bioresorbable Nanofiber-Based Systems for Wound Healing and Drug Delivery: Optimization of Fabrication Parameters
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
1552-4973,
70
(
2
), pp.
286
296
.
4.
He
,
W.
,
Yong
,
T.
,
Teo
,
W. E.
,
Ma
,
Z.
, and
Ramakrishna
,
S.
, 2005, “
Fabrication and Endothelialization of Collagen-Blended Biodegradable Polymer Nanofibers: Potential Vascular Graft for Blood Vessel Tissue Engineering
,”
Tissue Eng.
1076-3279,
11
(
9–10
), pp.
1574
1588
.
5.
Ramakrishna
,
S.
,
Fujihara
,
K.
,
Teo
,
W. -E.
,
Yong
,
T.
,
Ma
,
Z.
, and
Ramaseshan
,
R.
, 2006, “
Electrospun Nanofibers: Solving Global Issues
,”
Mater. Today
1369-7021,
9
(
3
), pp.
40
50
.
6.
Riesle
,
J.
,
Hollander
,
A. P.
,
Langer
,
R.
,
Freed
,
L. E.
, and
Vunjak-Novakovic
,
G.
, 1998, “
Collagen in Tissue-Engineered Cartilage: Types, Structure, and Crosslinks
,”
J. Cell. Biochem.
0730-2312,
71
(
3
), pp.
313
327
.
7.
Reneker
,
D.
, and
Chun
,
I.
, 1996, “
Nanometre Diameter Fibres of Polymer, Produced by Electrospinning
,”
Nanotechnology
0957-4484,
7
(
3
), pp.
216
223
.
8.
Doshi
,
J.
, and
Reneker
,
D. H.
, 1995, “
Electrospinning Process and Applications of Electrospun Fibers
,”
J. Electrost.
0304-3886,
35
(
2–3
), pp.
151
160
.
9.
Baumgarten
,
P. K.
, 1971, “
Electrostatic Spinning of Acrylic Microfibers
,”
J. Colloid Interface Sci.
0021-9797,
36
(
1
), pp.
71
79
.
10.
Nair
,
L. S.
,
Bhattacharyya
,
S.
, and
Laurencin
,
C. T.
, 2004, “
Development of Novel Tissue Engineering Scaffolds Via Electrospinning
,”
Expert Opin. Biol. Ther.
1471-2598,
4
(
5
), pp.
659
668
.
11.
Fong
,
H.
,
Chun
,
I.
, and
Reneker
,
D. H.
, 1999, “
Beaded Nanofibers Formed During Electrospinning
,”
Polymer
0032-3861,
40
(
16
), pp.
4585
4592
.
12.
Matthews
,
J. A.
,
Wnek
,
G. E.
,
Simpson
,
D. G.
, and
Bowlin
,
G. L.
, 2002, “
Electrospinning of Collagen Nanofibers
,”
Biomacromolecules
1525-7797,
3
(
2
), pp.
232
238
.
13.
Jin
,
H. J.
,
Chen
,
J.
,
Karageorgiou
,
V.
,
Altman
,
G. H.
, and
Kaplan
,
D. L.
, 2004, “
Human Bone Marrow Stromal Cell Responses on Electrospun Silk Fibroin Mats
,”
Biomaterials
0142-9612,
25
(
6
), pp.
1039
1047
.
14.
Yoshimoto
,
H.
,
Shin
,
Y. M.
,
Terai
,
H.
, and
Vacanti
,
J. P.
, 2003, “
A Biodegradable Nanofiber Scaffold by Electrospinning and Its Potential for Bone Tissue Engineering
,”
Biomaterials
0142-9612,
24
(
12
), pp.
2077
2082
.
15.
Shin
,
M.
,
Ishii
,
O.
,
Sueda
,
T.
, and
Vacanti
,
J. P.
, 2004, “
Contractile Cardiac Grafts Using a Novel Nanofibrous Mesh
,”
Biomaterials
0142-9612,
25
(
17
), pp.
3717
3723
.
16.
Li
,
W. J.
,
Tuli
,
R.
,
Okafor
,
C.
,
Derfoul
,
A.
,
Danielson
,
K. G.
,
Hall
,
D. J.
, and
Tuan
,
R. S.
, 2005, “
A Three-Dimensional Nanofibrous Scaffold for Cartilage Tissue Engineering Using Human Mesenchymal Stem Cells
,”
Biomaterials
0142-9612,
26
(
6
), pp.
599
609
.
17.
Kim
,
K.
,
Yu
,
M.
,
Zong
,
X.
,
Chiu
,
J.
,
Fang
,
D.
,
Seo
,
Y. S.
,
Hsiao
,
B. S.
,
Chu
,
B.
, and
Hadjiargyrou
,
M.
, 2003, “
Control of Degradation Rate and Hydrophilicity in Electrospun Non-Woven Poly(D,L-Lactide) Nanofiber Scaffolds for Biomedical Applications
,”
Biomaterials
0142-9612,
24
(
27
), pp.
4977
4985
.
18.
Yang
,
F.
,
Murugan
,
R.
,
Wang
,
S.
, and
Ramakrishna
,
S.
, 2005, “
Electrospinning of Nano/Micro Scale Poly(L-Lactic Acid) Aligned Fibers and Their Potential in Neural Tissue Engineering
,”
Biomaterials
0142-9612,
26
(
15
), pp.
2603
2610
.
19.
Mo
,
X. M.
,
Xu
,
C. Y.
,
Kotaki
,
M.
, and
Ramakrishna
,
S.
, 2004, “
Electrospun P(Lla-Cl) Nanofiber: A Biomimetic Extracellular Matrix for Smooth Muscle Cell and Endothelial Cell Proliferation
,”
Biomaterials
0142-9612,
25
(
10
), pp.
1883
1890
.
20.
Langer
,
R.
, 2000, “
Tissue Engineering
,”
Mol. Ther.
,
1
(
1
), pp.
12
15
. 1525-0016
21.
Soletti
,
L.
,
Nieponice
,
A.
,
Guan
,
J.
,
Stankus
,
J. J.
,
Wagner
,
W. R.
, and
Vorp
,
D. A.
, 2006, “
A Seeding Device for Tissue Engineered Tubular Structures
,”
Biomaterials
0142-9612,
27
(
28
), pp.
4863
4870
.
22.
Galban
,
C. J.
, and
Bruce
,
R. L.
, 1999, “
Analysis of Cell Growth Kinetics and Substrate Diffusion in a Polymer Scaffold
,”
Biotechnol. Bioeng.
0006-3592,
65
(
2
), pp.
121
132
.
23.
Cheng
,
G.
,
Youssef
,
B. B.
,
Markenscoff
,
P.
, and
Zygourakis
,
K.
, 2006, “
Cell Population Dynamics Modulate the Rates of Tissue Growth Processes
,”
Biophysical J.
,
90
(
3
), pp.
713
724
.
24.
Vicente-Manzanares
,
M.
,
Webb
,
D. J.
, and
Horwitz
,
A. R.
, 2005, “
Cell Migration at a Glance
,”
J. Cell Sci.
,
118
(
21
), pp.
4917
4919
. 0021-9533
25.
Dar
,
A.
,
Shachar
,
M.
,
Leor
,
J.
, and
Cohen
,
S.
, 2002, “
Cardiac Tissue Engineering Optimization of Cardiac Cell Seeding and Distribution in 3D Porous Alginate Scaffolds
,”
Biotechnol. Bioeng.
0006-3592,
80
(
3
), pp.
305
312
.
26.
Saini
,
S.
, and
Wick
,
T. M.
, 2003, “
Concentric Cylinder Bioreactor for Production of Tissue Engineered Cartilage: Effect of Seeding Density and Hydrodynamic Loading on Construct Development
,”
Biotechnol. Prog.
8756-7938,
19
(
2
), pp.
510
521
.
27.
Carrier
,
F.
,
Owens
,
R. A.
,
Nebert
,
D. W.
, and
Puga
,
A.
, 1992, “
Dioxin-Dependent Activation of Murine Cyp1a-1 Gene Transcription Requires Protein Kinase C-Dependent Phosphorylation
,”
Mol. Cell. Biol.
0270-7306,
12
(
4
), pp.
1856
1863
.
28.
Merchuk
,
J. C.
, 1991, “
Shear Effects on Suspended Cells
,”
Adv. Biochem. Eng./Biotechnol.
0724-6145,
44
, pp.
65
95
.
29.
Pei
,
M.
,
Solchaga
,
L. A.
,
Seidel
,
J.
,
Zeng
,
L. I.
,
Vunjak-Novakovic
,
G.
,
Caplan
,
A. I.
, and
Freed
,
L. E.
, 2002, “
Bioreactors Mediate the Effectiveness of Tissue Engineering Scaffolds
,”
FASEB J.
0892-6638,
16
(
12
), pp.
1691
1694
.
30.
Li
,
W. J.
,
Laurencin
,
C. T.
,
Caterson
,
E. J.
,
Tuan
,
R. S.
, and
Ko
,
F. K.
, 2002, “
Electrospun Nanofibrous Structure: A Novel Scaffold for Tissue Engineering
,”
J. Biomed. Mater. Res.
0021-9304,
60
(
4
), pp.
613
621
.
31.
Zhang
,
Y.
,
Ouyang
,
H.
,
Lim
,
C. T.
,
Ramakrishna
,
S.
, and
Huang
,
Z. -M.
, 2005, “
Electrospinning of Gelatin Fibers and Gelatin/PCL Composite Fibrous Scaffolds
,”
J. Biomed. Mater. Res.
0021-9304,
72B
(
1
), pp.
156
165
.
32.
Curtis
,
A.
, 1990, “
The Effects of Topographic and Mechanical Properties of Materials on Cell Behavior
,” Critical Reviews of Biocompatibility, 5(1), pp. 343–362.
33.
Curtis
,
A.
, and
Wilkinson
,
C.
, 1999, “
New Depths in Cell Behaviour: Reactions of Cells to Nanotopography
,”
Biochem. Soc. Symp.
0067-8694,
65
, pp.
15
26
.
34.
Curtis
,
A.
,
Wilkinson
,
C.
, and
Wojciak-Stothard
,
B.
, 1995, “
Accelerated Cell Movement
,”
J. Cellular Eng.
,
1
(
1
), pp.
35
38
.
35.
Chen
,
M.
,
Patra
,
P. K.
,
Warner
,
S. B.
, and
Bhowmick
,
S.
, 2006, “
Optimization of Electrospinning Process Parameters for Tissue Engineering Scaffolds
,”
Biophys. Rev. Lett.
1793-0480,
1
(
2
), pp.
153
178
.
36.
Abramoff
,
M. D.
,
Magelhaes
,
P. J.
, and
Ram
,
S. J.
, 2004, “
Image Processing With IMAGEJ
,”
Biophotonics Int.
1081-8693,
11
(
7
), pp.
36
42
.
37.
Chen
,
M.
,
Patra
,
P. K.
,
Warner
,
S. B.
, and
Bhowmick
,
S.
, 2007, “
Role of Fiber Diameter in Adhesion and Proliferation of NIH 3T3 Fibroblast on Electrospun Polycaprolactone Scaffolds
,”
Tissue Eng.
1076-3279,
13
(
3
), pp.
579
587
.
38.
O’Brien
,
F. J.
,
Harley
,
B. A.
,
Yannas
,
I. V.
, and
Gibson
,
L. J.
, 2005, “
The Effect of Pore Size on Cell Adhesion in Collagen-Gag Scaffolds
,”
Biomaterials
0142-9612,
26
(
4
), pp.
433
441
.
39.
Venugopal
,
J.
, and
Ramakrishna
,
S.
, 2005, “
Biocompatible Nanofiber Matrices for the Engineering of a Dermal Substitute for Skin Regeneration
,”
Tissue Eng.
1076-3279,
11
(
5–6
), pp.
847
854
.
40.
Qin
,
X. -H.
, and
Wang
,
S. -Y.
, 2006, “
Filtration Properties of Electrospinning Nanofibers
,”
J. Appl. Polym. Sci.
0021-8995,
102
(
2
), pp.
1285
1290
.
41.
Lanas
,
A.
,
Garcia-Gonzalez
,
A.
,
Esteva
,
F.
,
Piazuelo
,
E.
,
Jimenez
,
P.
, and
Morandeira
,
J. R.
, 1998, “
Collagen Secretion by Human Gastric and Skin Fibroblasts: Implications for Ulcer Healing
,”
Eur. Surg. Res.
0014-312X,
30
(
1
), pp.
48
54
.
You do not currently have access to this content.