Controversy exists regarding the suitability of fully developed versus measured inlet velocity profiles for image-based computational fluid dynamics (CFD) studies of carotid bifurcation hemodynamics. Here, we attempt to resolve this by investigating the impact of the reconstructed common carotid artery (CCA) inlet length on computed metrics of “disturbed” flow. Twelve normal carotid bifurcation geometries were reconstructed from contrast-enhanced angiograms acquired as part of the Vascular Aging—The Link That Bridges Age to Atherosclerosis study (VALIDATE). The right carotid artery lumen geometry was reconstructed from its brachiocephalic origin to well above the bifurcation, and the CCA was truncated objectively at locations one, three, five, and seven diameters proximal to where it flares into the bifurcation. Relative to the simulations carried out using the full CCA, models truncated at one CCA diameter strongly overestimated the amount of disturbed flow. Substantial improvement was offered by using three CCA diameters, with only minor further improvement using five CCA diameters. With seven CCA diameters, the amounts of disturbed flow agreed unambiguously with those predicted by the corresponding full-length models. Based on these findings, we recommend that image-based CFD models of the carotid bifurcation should incorporate at least three diameters of CCA length if fully developed velocity profiles are to be imposed at the inlet. The need for imposing measured inlet velocity profiles would seem to be relevant only for those cases where the CCA is severely truncated.

1.
Taylor
,
C. A.
, and
Steinman
,
D. A.
, 2008, “
Image-Based Modeling of Blood Flow and Vessel Wall Dynamics: Applications, Methods and Future Directions
,”
Ann. Biomed. Eng.
0090-6964,
38
(
3
), pp.
1188
1203
.
2.
Ford
,
M. D.
,
Xie
,
Y. J.
,
Wasserman
,
B. A.
, and
Steinman
,
D. A.
, 2008, “
Is Flow in the Common Carotid Artery Fully Developed?
,”
Physiol. Meas
0967-3334,
29
(
11
), pp.
1335
1349
.
3.
Sui
,
B.
,
Gao
,
P.
,
Lin
,
Y.
,
Qin
,
H.
,
Liu
,
L.
, and
Liu
,
G.
, 2008, “
Noninvasive Determination of Spatial Distribution and Temporal Gradient of Wall Shear Stress at Common Carotid Artery
,”
J. Biomech.
0021-9290,
41
(
14
), pp.
3024
3030
.
4.
Moyle
,
K. R.
,
Antiga
,
L.
, and
Steinman
,
D. A.
, 2006, “
Inlet Conditions for Image-Based CFD Models of the Carotid Bifurcation: Is it Reasonable to Assume Fully Developed Flow?
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
3
), pp.
371
379
.
5.
Wake
,
A. K.
,
Oshinski
,
J. N.
,
Tannenbaum
,
A. R.
, and
Giddens
,
D. P.
, 2009, “
Choice of In Vivo Versus Idealized Velocity Boundary Conditions Influences Physiologically Relevant Flow Patterns in a Subject-Specific Simulation of Flow in the Human Carotid Bifurcation
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
2
), p.
021013
.
6.
Ferrucci
,
L.
, 2008, “
The Baltimore Longitudinal Study of Aging (BLSA): A 50-Year-Long Journey and Plans for the Future
,”
J. Gerontol., Ser. A
1079-5006,
63
(
12
), pp.
1416
1419
.
7.
Antiga
,
L.
,
Piccinelli
,
M.
,
Botti
,
L.
,
Ene-Iordache
,
B.
,
Remuzzi
,
A.
, and
Steinman
,
D. A.
, 2008, “
An Image-Based Modeling Framework for Patient-Specific Computational Hemodynamics
,”
Med. Biol. Eng. Comput.
0140-0118,
46
(
11
), pp.
1097
1112
.
8.
Antiga
,
L.
, and
Steinman
,
D. A.
, 2004, “
Robust and Objective Decomposition and Mapping of Bifurcating Vessels
,”
IEEE Trans. Med. Imaging
0278-0062,
23
(
6
), pp.
704
713
.
9.
Ladak
,
H. M.
,
Thomas
,
J. B.
,
Mitchell
,
J. R.
,
Rutt
,
B. K.
, and
Steinman
,
D. A.
, 2001, “
A Semi-Automatic Technique for Measurement of Arterial Wall From Black Blood MRI
,”
Med. Phys.
0094-2405,
28
(
6
), pp.
1098
1107
.
10.
Hoi
,
Y.
,
Wasserman
,
B. A.
,
Xie
,
Y. J.
,
Najjar
,
S. S.
,
Ferruci
,
L.
,
Lakatta
,
E. G.
,
Gerstenblith
,
G.
, and
Steinman
,
D. A.
, 2010, “
Characterization of Volumetric Flow Rate Waveforms at the Carotid Bifurcations of Older Adults
,”
Physiol. Meas
0967-3334,
31
(
3
), pp.
291
302
.
11.
Marshall
,
I.
,
Papathanasopoulou
,
P.
, and
Wartolowska
,
K.
, 2004, “
Carotid Flow Rates and Flow Division at the Bifurcation in Healthy Volunteers
,”
Physiol. Meas
0967-3334,
25
(
3
), pp.
691
697
.
12.
Minev
,
P. D.
, and
Ethier
,
C. R.
, 1998, “
A Characteristic/Finite Element Algorithm for the 3-D Navier–Stokes Equations Using Unstructured Grids
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
178
(
1–2
), pp.
39
50
.
13.
Ethier
,
C. R.
,
Prakash
,
S.
,
Steinman
,
D. A.
,
Leask
,
R. L.
,
Couch
,
G. G.
, and
Ojha
,
M.
, 2000, “
Steady Flow Separation Patterns in a 45 Degree Junction
,”
J. Fluid Mech.
0022-1120,
411
, pp.
1
38
.
14.
Lee
,
S. W.
,
Antiga
,
L.
,
Spence
,
J. D.
, and
Steinman
,
D. A.
, 2008, “
Geometry of the Carotid Bifurcation Predicts Its Exposure to Disturbed Flow
,”
Stroke
0039-2499,
39
(
8
), pp.
2341
2347
.
15.
Stonebridge
,
P. A.
,
Hoskins
,
P. R.
,
Allan
,
P. L.
, and
Belch
,
J. F.
, 1996, “
Spiral Laminar Flow In Vivo
,”
Clin. Sci.
0323-5084,
91
(
1
), pp.
17
21
.
16.
Morbiducci
,
U.
,
Ponzini
,
R.
,
Grigioni
,
M.
, and
Redaelli
,
A.
, 2007, “
Helical Flow as Fluid Dynamic Signature for Atherogenesis Risk in Aortocoronary Bypass. A Numeric Study
,”
J. Biomech.
0021-9290,
40
(
3
), pp.
519
534
.
17.
Kilner
,
P. J.
,
Yang
,
G. Z.
,
Mohiaddin
,
R. H.
,
Firmin
,
D. N.
, and
Longmore
,
D. B.
, 1993, “
Helical and Retrograde Secondary Flow Patterns in the Aortic Arch Studied by Three-Directional Magnetic Resonance Velocity Mapping
,”
Circulation
0009-7322,
88
(
5
), pp.
2235
2247
.
18.
Houston
,
J. G.
,
Gandy
,
S. J.
,
Sheppard
,
D. G.
,
Dick
,
J. B.
,
Belch
,
J. J.
, and
Stonebridge
,
P. A.
, 2003, “
Two-Dimensional Flow Quantitative MRI of Aortic Arch Blood Flow Patterns: Effect of Age, Sex, and Presence of Carotid Atheromatous Disease on Prevalence of Spiral Blood Flow
,”
J. Magn. Reson Imaging
1053-1807,
18
(
2
), pp.
169
174
.
19.
Hoi
,
Y.
,
Wasserman
,
B. A.
,
Lakatta
,
E. G.
, and
Steinman
,
D. A.
, 2010, “
Carotid Bifurcation Hemodynamics in Older Adults: Effect of Measured Versus Assumed Flow Waveform
,”
ASME J. Biomech. Eng.
0148-0731,
132
(
7
), p.
071006
.
20.
Marzo
,
A.
,
Singh
,
P.
,
Reymond
,
P.
,
Stergiopulos
,
N.
,
Patel
,
U.
, and
Hose
,
R.
, 2009, “
Influence of Inlet Boundary Conditions on the Local Haemodynamics of Intracranial Aneurysms
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
12
(
4
), pp.
431
444
.
21.
Castro
,
M. A.
,
Putman
,
C. M.
, and
Cebral
,
J. R.
, 2006, “
Computational Fluid Dynamics Modeling of Intracranial Aneurysms: Effects of Parent Artery Segmentation on Intra-Aneurysmal Hemodynamics
,”
AJNR Am. J. Neuroradiol.
0195-6108,
27
(
8
), pp.
1703
1709
.
22.
Myers
,
J. G.
,
Moore
,
J. A.
,
Ojha
,
M.
,
Johnston
,
K. W.
, and
Ethier
,
C. R.
, 2001, “
Factors Influencing Blood Flow Patterns in the Human Right Coronary Artery
,”
Ann. Biomed. Eng.
0090-6964,
29
(
2
), pp.
109
120
.
23.
Zhao
,
S. Z.
,
Xu
,
X. Y.
,
Collins
,
M. W.
,
Stanton
,
A. V.
,
Hughes
,
A. D.
, and
Thom
,
S. A.
, 1999, “
Flow in Carotid Bifurcations: Effect of the Superior Thyroid Artery
,”
Med. Eng. Phys.
1350-4533,
21
(
4
), pp.
207
214
.
24.
Lee
,
S. W.
, and
Steinman
,
D. A.
, 2007, “
On the Relative Importance of Rheology for Image-Based CFD Models of the Carotid Bifurcation
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
2
), pp.
273
278
.
25.
Zhao
,
S. Z.
,
Xu
,
X. Y.
,
Hughes
,
A. D.
,
Thom
,
S. A.
,
Stanton
,
A. V.
,
Ariff
,
B.
, and
Long
,
Q.
, 2000, “
Blood Flow and Vessel Mechanics in a Physiologically Realistic Model of a Human Carotid Arterial Bifurcation
,”
J. Biomech.
0021-9290,
33
(
8
), pp.
975
984
.
26.
Anayiotos
,
A. S.
,
Jones
,
S. A.
,
Giddens
,
D. P.
,
Glagov
,
S.
, and
Zarins
,
C. K.
, 1994, “
Shear Stress at a Compliant Model of the Human Carotid Bifurcation
,”
ASME J. Biomech. Eng.
0148-0731,
116
(
1
), pp.
98
106
.
27.
Perktold
,
K.
, and
Rappitsch
,
G.
, 1995, “
Computer Simulation of Local Blood Flow and Vessel Mechanics in a Compliant Carotid Artery Bifurcation Model
,”
J. Biomech.
0021-9290,
28
(
7
), pp.
845
856
.
You do not currently have access to this content.