Skin marker-based motion analysis has been widely used in biomechanical studies and clinical applications. Unfortunately, the accuracy of knee joint secondary motions is largely limited by the nonrigidity nature of human body segments. Numerous studies have investigated the characteristics of soft tissue movement. Utilizing these characteristics, we may improve the accuracy of knee joint motion measurement. An optimizer was developed by incorporating the soft tissue movement patterns at special bony landmarks into constraint functions. Bony landmark constraints were assigned to the skin markers at femur epicondyles, tibial plateau edges, and tibial tuberosity in a motion analysis algorithm by limiting their allowed position space relative to the underlying bone. The rotation matrix was represented by quaternion, and the constrained optimization problem was solved by Fletcher’s version of the Levenberg–Marquardt optimization technique. The algorithm was validated by using motion data from both skin-based markers and bone-mounted markers attached to fresh cadavers. By comparing the results with the ground truth bone motion generated from the bone-mounted markers, the new algorithm had a significantly higher accuracy (root-mean-square (RMS) error: 0.7±0.1deg in axial rotation and 0.4±0.1deg in varus-valgus) in estimating the knee joint secondary rotations than algorithms without bony landmark constraints (RMS error: 1.7±0.4deg in axial rotation and 0.7±0.1deg in varus-valgus). Also, it predicts a more accurate medial-lateral translation (RMS error: 0.4±0.1mm) than the conventional techniques (RMS error: 1.2±0.2mm). The new algorithm, using bony landmark constrains, estimates more accurate secondary rotations and medial-lateral translation of the underlying bone.

1.
Holden
,
M.
, 2008, “
A Review of Geometric Transformations for Nonrigid Body Registration
,”
IEEE Trans. Med. Imaging
0278-0062,
27
(
1
), pp.
111
128
.
2.
Leardini
,
A.
,
Chiari
,
L.
,
Della Croce
,
U.
, and
Cappozzo
,
A.
, 2005, “
Human Movement Analysis Using Stereophotogrammetry. Part 3. Soft Tissue Artifact Assessment and Compensation
,”
Gait and Posture
0966-6362,
21
(
2
), pp.
212
225
.
3.
Fuller
,
J.
,
Liu
,
L. J.
,
Murphy
,
M. C.
, and
Mann
,
R. W.
, 1997, “
A Comparison of Lower-Extremity Skeletal Kinematics Measured Using Skin- and Pin-Mounted Markers
,”
Hum. Mov. Sci.
0167-9457,
16
(
2–3
), pp.
219
242
.
4.
Cappozzo
,
A.
,
Catani
,
F.
,
Leardini
,
A.
,
Benedetti
,
M. G.
, and
Croce
,
U. D.
, 1996, “
Position and Orientation in Space of Bones During Movement: Experimental Artefacts
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
11
(
2
), pp.
90
100
.
5.
Appleyard
,
R. C.
,
Ghosh
,
P.
, and
Swain
,
M. V.
, 1999, “
Biomechanical, Histological and Immunohistological Studies of Patellar Cartilage in an Ovine Model of Osteoarthritis Induced by Lateral Meniscectomy
,”
Osteoarthritis Cartilage
1063-4584,
7
(
3
), pp.
281
294
.
6.
Quinn
,
T. M.
,
Hunziker
,
E. B.
, and
Hauselmann
,
H. J.
, 2005, “
Variation of Cell and Matrix Morphologies in Articular Cartilage Among Locations in the Adult Human Knee
,”
Osteoarthritis Cartilage
1063-4584,
13
(
8
), pp.
672
678
.
7.
Thambyah
,
A.
,
Nather
,
A.
, and
Goh
,
J.
, 2006, “
Mechanical Properties of Articular Cartilage Covered by the Meniscus
,”
Osteoarthritis Cartilage
1063-4584,
14
(
6
), pp.
580
588
.
8.
Andriacchi
,
T. P.
,
Alexander
,
E. J.
,
Toney
,
M. K.
,
Dyrby
,
C.
, and
Sum
,
J.
, 1998, “
A Point Cluster Method for In Vivo Motion Analysis: Applied to a Study of Knee Kinematics
,”
ASME J. Biomech. Eng.
0148-0731,
120
(
6
), pp.
743
749
.
9.
Lu
,
T. W.
, and
O’Connor
,
J. J.
, 1999, “
Bone Position Estimation From Skin Marker Co-Ordinates Using Global Optimisation With Joint Constraints
,”
J. Biomech.
0021-9290,
32
(
2
), pp.
129
134
.
10.
Spoor
,
C. W.
, and
Veldpaus
,
F. E.
, 1980, “
Rigid Body Motion Calculated From Spatial Co-Ordinates of Markers
,”
J. Biomech.
0021-9290,
13
(
4
), pp.
391
393
.
11.
Stagni
,
R.
,
Fantozzi
,
S.
,
Cappello
,
A.
, and
Leardini
,
A.
, 2005, “
Quantification of Soft Tissue Artefact in Motion Analysis by Combining 3D Fluoroscopy and Stereophotogrammetry: A Study on Two Subjects
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
20
(
3
), pp.
320
329
.
12.
Reinschmidt
,
C.
,
Van Den Bogert
,
A. J.
,
Nigg
,
B. M.
,
Lundberg
,
A.
, and
Murphy
,
N.
, 1997, “
Effect of Skin Movement on the Analysis of Skeletal Knee Joint Motion During Running
,”
J. Biomech.
0021-9290,
30
(
7
), pp.
729
732
.
13.
Barrance
,
P. J.
,
Williams
,
G. N.
,
Novotny
,
J. E.
, and
Buchanan
,
T. S.
, 2005, “
A Method for Measurement of Joint Kinematics In Vivo by Registration of 3-D Geometric Models With Cine Phase Contrast Magnetic Resonance Imaging Data
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
5
), pp.
829
837
.
14.
Defrate
,
L. E.
,
Papannagari
,
R.
,
Gill
,
T. J.
,
Moses
,
J. M.
,
Pathare
,
N. P.
, and
Li
,
G.
, 2006, “
The 6 Degrees of Freedom Kinematics of the Knee After Anterior Cruciate Ligament Deficiency: An In Vivo Imaging Analysis
,”
Am. J. Sports Med.
0363-5465,
34
(
8
), pp.
1240
1246
.
15.
Papannagari
,
R.
,
Gill
,
T. J.
,
Defrate
,
L. E.
,
Moses
,
J. M.
,
Petruska
,
A. J.
, and
Li
,
G.
, 2006, “
In Vivo Kinematics of the Knee After Anterior Cruciate Ligament Reconstruction: A Clinical and Functional Evaluation
,”
Am. J. Sports Med.
0363-5465,
34
(
12
), pp.
2006
2012
.
16.
Dennis
,
D. A.
,
Mahfouz
,
M. R.
,
Komistek
,
R. D.
, and
Hoff
,
W.
, 2005, “
In Vivo Determination of Normal and Anterior Cruciate Ligament-Deficient Knee Kinematics
,”
J. Biomech.
0021-9290,
38
(
2
), pp.
241
253
.
17.
Li
,
G.
,
Van De Velde
,
S. K.
, and
Bingham
,
J. T.
, 2008, “
Validation of a Non-Invasive Fluoroscopic Imaging Technique for the Measurement of Dynamic Knee Joint Motion
,”
J. Biomech.
0021-9290,
41
(
7
), pp.
1616
1622
.
18.
Andriacchi
,
T. P.
, and
Mundermann
,
A.
, 2006, “
The Role of Ambulatory Mechanics in the Initiation and Progression of Knee Osteoarthritis
,”
Curr. Opin. Rheumatol.
1040-8711,
18
(
5
), pp.
514
518
.
19.
Akbarshahi
,
M.
,
Schache
,
A. G.
,
Fernandez
,
J. W.
,
Baker
,
R.
,
Banks
,
S.
, and
Pandy
,
M. G.
, 2010, “
Non-Invasive Assessment of Soft-Tissue Artifact and Its Effect on Knee Joint Kinematics During Functional Activity
,”
J. Biomech.
0021-9290,
43
(
7
), pp.
1292
1301
.
20.
Gao
,
B.
, and
Zheng
,
N. N.
, 2008, “
Investigation of Soft Tissue Movement During Level Walking: Translations and Rotations of Skin Markers
,”
J. Biomech.
0021-9290,
41
(
15
), pp.
3189
3195
.
21.
Garling
,
E. H.
,
Kaptein
,
B. L.
,
Mertens
,
B.
,
Barendregt
,
W.
,
Veeger
,
H. E.
,
Nelissen
,
R. G.
, and
Valstar
,
E. R.
, 2007, “
Soft-Tissue Artefact Assessment During Step-Up Using Fluoroscopy and Skin-Mounted Markers
,”
J. Biomech.
0021-9290,
40
(
1
), pp.
S18
S24
.
22.
Kuipers
,
J.
, 2002,
Quaternions and Rotation Sequences: A Primer With Applications to Orbits, Aerospace, and Virtual Reality
,
Princeton University Press
,
Princeton, NJ
.
23.
Schmidt
,
J.
, and
Niemann
,
H.
, 2001, “
Using Quaternions for Parametrizing 3-D Rotations in Unconstrained Nonlinear Optimization
,”
Vision, Modeling, and Visualization
, Stuttgart, Germany, pp.
399
406
.
24.
Hamilton
,
W. R.
, 1866,
Elements of Quaternions
,
Longman
,
London, UK
.
25.
Fletcher
,
R.
, 1971, “
A Modified Marquardt Subroutine for Nonlinear Least Squares
,” Report No. R6799.
26.
Levenberg
,
K.
, 1944, “
A Method for the Solution of Certain Non-Linear Problems in Least Square
,”
Q. Appl. Math.
0033-569X,
2
, pp.
164
168
.
27.
Marquardt
,
D.
, 1963, “
An Algorithm for Least-Squares Estimation of Nonlinear Parameters
,”
SIAM J. Appl. Math.
0036-1399,
11
, pp.
431
441
.
28.
Andriacchi
,
T. P.
, and
Dyrby
,
C. O.
, 2005, “
Interactions Between Kinematics and Loading During Walking for the Normal and ACL Deficient Knee
,”
J. Biomech.
0021-9290,
38
(
2
), pp.
293
298
.
29.
Gao
,
B.
, 2009, “
A New Soft Tissue Artifact Compensation Technique in Human Motion Analysis and Clinical Applications
,” Ph.D. thesis, University of Florida, Gainesville, FL.
30.
Dyrby
,
C. O.
, and
Andriacchi
,
T. P.
, 2004, “
Secondary Motions of the Knee During Weight Bearing and Non-Weight Bearing Activities
,”
J. Orthop. Res.
0736-0266,
22
(
4
), pp.
794
800
.
You do not currently have access to this content.