The reaction of articular cartilage and other soft tissues to mechanical loads has been characterized by coupled hydraulic (H) and mechanical (M) processes. An enhanced biphasic material model is presented, which may be used to describe the load response of soft tissue. A large-strain numerical approach of HM coupled processes has been applied. Physical and geometrical nonlinearities, as well as anisotropy and intrinsic rate-dependency of the solid skeleton have been realized using a thermodynamically consistent approach. The presented material model has been implemented into the commercially available finite element code MSC MARC. Initial verification of the model has been conducted analytically in tendonlike structures. The poroelastic and intrinsic viscoelastic features of the model were compared with the experimental data of an unconfined compression test of agarose hydrogel. A recent example from the area of cartilage research has been modeled, and the mechanical response was compared with cell viability. All examples showed good agreement between numerical and analytical/experimental results.

1.
Olsen
,
S.
, and
Oloyede
,
A.
, 2002, “
A Finite Element Analysis Methodology for Representing the Articular Cartilage Functional Structure
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
5
(
6
), pp.
377
386
.
2.
Huang
,
C. -Y.
,
Stankiewicz
,
A.
,
Ateshian
,
G. A.
, and
Mow
,
V. C.
, 2005, “
Anisotropy, Inhomogeneity, and Tension-Compression Nonlinearity of Human Glenohumeral Cartilage in Finite Deformation
,”
J. Biomech.
0021-9290,
38
(
4
), pp.
799
–809.
3.
Holmes
,
M. H.
, and
Mow
,
V. C.
, 1990, “
The Nonlinear Characteristics of Soft Gels and Hydrated Connective Tissues in Ultrafiltration
,”
J. Biomech.
0021-9290,
23
(
11
), pp.
1145
1156
.
4.
Acartürk
,
A.
,
Ehlers
,
W.
,
Abbas
,
I.
, and
Markert
,
B.
, 2003, “
A 3-D Model for Finite Viscoelastic Swelling of Charged Tissues and Gels
,”
Proc. Appl. Math. Mech.
1617-7061,
3
, pp.
242
243
.
5.
Ehlers
,
W.
,
Karajan
,
N.
, and
Markert
,
B.
, 2009, “
An Extended Biphasic Model for Charged Hydrated Tissues With Application to the Intervertebral Disc
,”
Biomech. Model Mechanobiol.
,
8
(
3
), pp.
233
251
.
6.
Li
,
L. P.
,
Soulhat
,
J.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
, 1999, “
Nonlinear Analysis of Cartilage in Unconfined Ramp Compression Using a Fibril Reinforced Poroelastic Model
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
14
(
9
), pp.
673
682
.
7.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
, 2000, “
A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-Compression Nonlinearity in Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
6
), pp.
576
586
.
8.
Ateshian
,
G. A.
, and
Hung
,
C. T.
, 2006, “
The Natural Synovial Joint: Properties of Cartilage
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
220
(
8
), pp.
657
670
.
9.
Itskov
,
M.
, and
Aksel
,
N.
, 2004, “
A Class of Orthotropic and Transversely Isotropic Hyperelastic Constitutive Models Based on a Polyconvex Strain Energy Function
,”
Int. J. Solids Struct.
0020-7683,
41
(
14
), pp.
3833
3848
.
10.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
, 1980, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression? Theory and Experiments
,”
ASME J. Biomech. Eng.
0148-0731,
102
(
1
), pp.
73
84
.
11.
Mak
,
A. F.
, 1986, “
Unconfined Compression of Hydrated Viscoelastic Tissues: A Biphasic Poroviscoelastic Analysis
,”
Biorheology
0006-355X,
23
(
4
), pp.
371
383
.
12.
DiSilvestro
,
M. R.
,
Zhu
,
Q.
, and
Suh
,
J. K.
, 2001, “
Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage: II—Effect of Variable Strain Rates
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
2
), pp.
198
200
.
13.
Lion
,
A.
, 1997, “
On the Large Deformation Behaviour of Reinforced Rubber at Different Temperatures
,”
J. Mech. Phys. Solids
0022-5096,
45
, pp.
1805
1834
.
14.
Prendergast
,
P. J.
,
van Driel
,
W. D.
, and
Kuiper
,
J. H.
, 1996, “
A Comparison of Finite Element Codes for the Solution of Biphasic Poroelastic Problems
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
210
(
2
), pp.
131
136
.
15.
Bowen
,
R.
, 1980, “
Incompressible Porous Media Models by Use of the Theory of Mixtures
,”
Int. J. Eng. Sci.
0020-7225,
18
, pp.
1129
1148
.
16.
de Boer
,
R.
, 2000,
Theory of Porous Media: Highlights in Historical Development and Current State
,
Springer
,
Berlin
.
17.
Ehlers
,
W.
, 2002, “
Foundations of Multiphasic and Porous Materials
,”
Porous Media: Theory, Experiments and Numerical Applications
,
W.
Ehlers
and
J.
Bluhm
, eds.,
Springer
,
Berlin
, pp.
4
86
.
18.
Suh
,
J. K.
,
Li
,
Z.
, and
Woo
,
S. L.
, 1995, “
Dynamic Behavior of a Biphasic Cartilage Model Under Cyclic Compressive Loading
,”
J. Biomech.
0021-9290,
28
(
4
), pp.
357
364
.
19.
Li
,
L.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
, 2002, “
The Role of Fibril Reinforcement in the Mechanical Behavior of Cartilage
,”
Biorheology
0006-355X,
39
(
1–2
), pp.
89
96
.
20.
Wilson
,
W.
,
van Donkelaar
,
C. C.
,
van Rietbergen
,
B.
, and
Huiskes
,
R.
, 2005, “
A Fibril-Reinforced Poroviscoelastic Swelling Model for Articular Cartilage
,”
J. Biomech.
0021-9290,
38
(
6
), pp.
1195
1204
.
21.
Pande
,
G. N.
,
Owen
,
D. R. J.
, and
Zienkiewicz
,
O. C.
, 1977, “
Overlay Models in Time-Dependent Non-Linear Material Analysis
,”
Comput. Struct.
0045-7949,
7
(
3
), pp.
435
443
.
22.
Ehlers
,
W.
, and
Markert
,
B.
, 2001, “
A Linear Viscoelastic Biphasic Model for Soft Tissues Based on the Theory of Porous Media
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
5
), pp.
418
424
.
23.
Reese
,
S.
, and
Govindjee
,
S.
, 1998, “
A Theory of Finite Viscoelasticity and Numerical Aspects
,”
Int. J. Solids Struct.
0020-7683,
35
, pp.
3455
3482
.
24.
Holzapfel
,
G.
,
Gasser
,
T.
, and
Ogden
,
R.
, 2002, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
Cardiovascular Soft Tissue Mechanics
, Springer, Netherlands, pp.
1
48
.
25.
Gent
,
A.
, 1996, “
A New Constitutive Relation for Rubber
,”
Rubber Chem. Technol.
0035-9475,
69
, pp.
59
61
.
26.
Horgan
,
C.
, and
Saccomandi
,
G.
, 2002, “
Constitutive Modeling of Rubber-Like and Biological Materials With Limiting Chain Extensibility
,”
Math. Mech. Solids
1081-2865,
7
, pp.
353
371
.
27.
Ogden
,
R. W.
, and
Saccomandi
,
G.
, 2007, “
Introducing Mesoscopic Information Into Constitutive Equations for Arterial Walls
,”
Biomech. Model Mechanobiol.
,
6
(
5
), pp.
333
344
. 0002-7820
28.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
, 2006, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc, Interface
,
3
(
6
), pp.
15
35
.
29.
Gu
,
W. Y.
,
Yao
,
H.
,
Huang
,
C. Y.
, and
Cheung
,
H. S.
, 2003, “
New Insight Into Deformation-Dependent Hydraulic Permeability of Gels and Cartilage, and Dynamic Behavior of Agarose Gels in Confined Compression
,”
J. Biomech.
0021-9290,
36
(
4
), pp.
593
598
.
30.
Muralidharan
,
P.
, 2006, “
Finite Deformation Biphasic Material Characterization and Modeling of Agarose Gel for Functional Tissue Engineering Applications
,” MS thesis, University of Cincinnati, Ohio, USA.
31.
Price
,
K.
, 1996, “
Differential Evolution: A Fast and Simple Numerical Optimizer
,”
Proceedings of the 1996 Biennial Conference of the North American Fuzzy Information Processing Society (NAFIPS)
, pp.
524
527
.
32.
Storn
,
R.
, and
Price
,
K.
, 1997, “
Differential Evolution—A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
0925-5001,
11
(
4
), pp.
341
359
.
33.
Görke
,
U. -J.
,
Günther
,
H.
, and
Wimmer
,
M.
, 2004, “
Multiscale FE-Modelling of Native and Engineered Articular Cartilage Tissue
,”
Proceedings of the IV European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS)
, pp.
1
20
.
34.
Guilak
,
F.
, and
Mow
,
V. C.
, 2000, “
The Mechanical Environment of the Chondrocyte: a Biphasic Finite Element Model of Cell-Matrix Interactions in Articular Cartilage
,”
J. Biomech.
0021-9290,
33
(
12
), pp.
1663
1673
.
35.
Wu
,
J. Z.
, and
Herzog
,
W.
, 2000, “
Finite Element Simulation of Location- and Time-Dependent Mechanical Behavior of Chondrocytes in Unconfined Compression Tests
,”
Ann. Biomed. Eng.
0090-6964,
28
(
3
), pp.
318
330
.
36.
García
,
J. J.
, and
Cortés
,
D. H.
, 2007, “
A Biphasic Viscohyperelastic Fibril-Reinforced Model for Articular Cartilage: Formulation and Comparison With Experimental Data
,”
J. Biomech.
0021-9290,
40
(
8
), pp.
1737
1744
.
37.
Chen
,
S. S.
,
Falcovitz
,
Y. H.
,
Schneiderman
,
R.
,
Maroudas
,
A.
, and
Sah
,
R. L.
, 2001, “
Depth-Dependent Compressive Properties of Normal Aged Human Femoral Head Articular Cartilage: Relationship to Fixed Charge Density
,”
Osteoarthritis Cartilage
1063-4584,
9
(
6
), pp.
561
569
.
38.
Wilson
,
W.
,
Huyghe
,
J. M.
, and
van Donkelaar
,
C. C.
, 2007, “
Depth-Dependent Compressive Equilibrium Properties of Articular Cartilage Explained by Its Composition
,”
Biomech. Model Mechanobiol.
,
6
(
1–2
), pp.
43
53
.
39.
Kelly
,
D. J.
, and
Prendergast
,
P. J.
, 2006, “
Prediction of the Optimal Mechanical Properties for a Scaffold Used in Osteochondral Defect Repair
,”
Tissue Eng.
1076-3279,
12
(
9
), pp.
2509
2519
.
40.
Humphrey
,
J. D.
, 2008, “
Vascular Adaptation and Mechanical Homeostasis at Tissue, Cellular, and Sub-Cellular Levels
,”
Cell Biochem. Biophys.
1085-9195,
50
(
2
), pp.
53
78
.
41.
Nagel
,
T.
, and
Kelly
,
D.
, 2010, “
Mechano-Regulation of Mesenchymal Stem Cell Differentiation and Collagen Organisation During Skeletal Tissue Repair
,”
Biomech. Model Mechanobiol.
, to be published. 0002-7820
42.
Garrido
,
C. P.
,
Hakimiyan
,
A.
,
Rappoport
,
L.
,
Oegema
,
T.
,
Wimmer
,
M.
, and
Chubinskaya
,
S.
, 2009, “
Anti-Apoptotic Treatments Prevent Cartilage Degradation After Acute Trauma to Human Ankle Cartilage
,”
Osteoarthritis Cartilage
1063-4584,
17
(
9
), pp.
1244
1251
.
You do not currently have access to this content.