Elastography, which is the imaging of soft tissues on the basis of elastic modulus (or, more generally, stiffness) has become increasingly popular in the last decades and holds promise for application in many medical areas. Most of the attention has focused on inhomogeneous materials that are locally isotropic, the intent being to detect a (stiff) tumor within a (compliant) tissue. Many tissues of mechanical interest, however, are anisotropic, so a method capable of determining material anisotropy would be attractive. We present here an approach to determine the mechanical anisotropy of inhomogeneous, anisotropic tissues, by directly solving the finite element representation of the Cauchy stress balance in the tissue. The method divides the sample domain into subdomains assumed to have uniform properties and solves for the material constants in each subdomain. Two-dimensional simulated experiments on linear anisotropic inhomogeneous systems demonstrate the ability of the method, and simulated experiments on a nonlinear model demonstrate the ability of the method to capture anisotropy qualitatively even though only a linear model is used in the inverse problem. As with any inverse problem, ill-posedness is a serious concern, and multiple tests may need to be done on the same sample to determine the properties with confidence.

1.
Greenleaf
,
J. F.
,
Fatemi
,
M.
, and
Insana
,
M.
, 2003, “
Selected Methods for Imaging Elastic Properties of Biological Tissues
,”
Annu. Rev. Biomed. Eng.
1523-9829,
5
, pp.
57
78
.
2.
Muthupillai
,
R.
,
Lomas
,
D. J.
,
Rossman
,
P. J.
,
Greenleaf
,
J. F.
,
Manduca
,
A.
, and
Ehman
,
R. L.
, 1995, “
Magnetic Resonance Elastography by Direct Visualization of Propagating Acoustic Strain Waves
,”
Science (N.Y.)
,
269
(
5232
), pp.
1854
1857
.
3.
Ophir
,
J.
,
Cespedes
,
I.
,
Ponnekanti
,
H.
,
Yazdi
,
Y.
, and
Li
,
X.
, 1991, “
Elastography: A Quantitative Method for Imaging the Elasticity of Biological Tissues
,”
Ultrason. Imaging
0161-7346,
13
(
2
), pp.
111
134
.
4.
Doyley
,
M. M.
,
Meaney
,
P. M.
, and
Bamber
,
J. C.
, 2000, “
Evaluation of an Iterative Reconstruction Method for Quantitative Elastography
,”
Phys. Med. Biol.
0031-9155,
45
(
6
), pp.
1521
1540
.
5.
Sinkus
,
R.
,
Lorenzen
,
J.
,
Schrader
,
D.
,
Lorenzen
,
M.
,
Dargatz
,
M.
, and
Holz
,
D.
, 2000, “
High-Resolution Tensor MR Elastography for Breast Tumour Detection
,”
Phys. Med. Biol.
0031-9155,
45
(
6
), pp.
1649
1664
.
6.
Lei
,
F.
, and
Szeri
,
A. Z.
, 2007, “
Inverse Analysis of Constitutive Models: Biological Soft Tissues
,”
J. Biomech.
0021-9290,
40
(
4
), pp.
936
940
.
7.
Avril
,
S.
,
Bonnet
,
M.
,
Bretelle
,
A. -S.
,
Grediac
,
M.
,
Hild
,
F.
,
Ienny
,
P.
,
Latourte
,
F.
,
Lemosse
,
D.
,
Pagano
,
S.
,
Pagnacco
,
E.
, and
Pierron
,
F.
, 2008, “
Overview of Identification Methods of Mechanical Parameters Based on Full-Field Measurements
,”
Exp. Mech.
0014-4851,
48
(
4
), pp.
381
402
.
8.
Cox
,
S. J.
, and
Gockenbach
,
M.
, 1997, “
Recovering Planar Lame Moduli from a Single-Traction Experiment
,”
Math. Mech. Solids
1081-2865,
2
(
3
), pp.
297
306
.
9.
Flynn
,
D. M.
,
Peura
,
G. D.
,
Grigg
,
P.
, and
Hoffman
,
A. H.
, 1998, “
A Finite Element Based Method to Determine the Properties of Planar Soft Tissue
,”
ASME J. Biomech. Eng.
0148-0731,
120
(
2
), pp.
202
210
.
10.
Pedrigi
,
R. M.
,
David
,
G.
,
Dziezyc
,
J.
, and
Humphrey
,
J. D.
, 2007, “
Regional Mechanical Properties and Stress Analysis of the Human Anterior Lens Capsule
,”
Vision Res.
0042-6989,
47
(
13
), pp.
1781
1789
.
11.
Girard
,
M. J.
,
Downs
,
J. C.
,
Bottlang
,
M.
,
Burgoyne
,
C. F.
, and
Suh
,
J. K.
, 2009, “
Peripapillary and Posterior Scleral Mechanics—Part II: Experimental and Inverse Finite Element Characterization
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
5
), p.
051012
.
12.
Liu
,
Y.
,
Sun
,
L. Z.
, and
Wang
,
G.
, 2005, “
Tomography-Based 3-D Anisotropic Elastography Using Boundary Measurements
,”
IEEE Trans. Med. Imaging
0278-0062,
24
(
10
), pp.
1323
1333
.
13.
Zhu
,
Y.
,
Hall
,
T. J.
, and
Jiang
,
J.
, 2003, “
A Finite-Element Approach for Young’s Modulus Reconstruction
,”
IEEE Trans. Med. Imaging
0278-0062,
22
(
7
), pp.
890
901
.
14.
Seshaiyer
,
P.
, and
Humphrey
,
J. D.
, 2003, “
A Sub-Domain Inverse Finite Element Characterization of Hyperelastic Membranes Including Soft Tissues
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
3
), pp.
363
371
.
15.
Van Houten
,
E. E.
,
Paulsen
,
K. D.
,
Miga
,
M. I.
,
Kennedy
,
F. E.
, and
Weaver
,
J. B.
, 1999, “
An Overlapping Subzone Technique for MR-Based Elastic Property Reconstruction
,”
Magn. Reson. Med.
0740-3194,
42
(
4
), pp.
779
786
.
16.
Oberai
,
A. A.
,
Gokhale
,
N. H.
,
Doyley
,
M. M.
, and
Bamber
,
J. C.
, 2004, “
Evaluation of the Adjoint Equation Based Algorithm for Elasticity Imaging
,”
Phys. Med. Biol.
0031-9155,
49
(
13
), pp.
2955
2974
.
17.
Aster
,
R.
,
Borchers
,
B.
, and
Thurber
,
C.
, 2005,
Parameter Estimation and Inverse Problems
,
Academic
,
New York
.
18.
Sun
,
W.
, and
Sacks
,
M. S.
, 2005, “
Finite Element Implementation of a Generalized Fung-Elastic Constitutive Model for Planar Soft Tissues
,”
Biomech. Model. Mechanobiol.
1617-7959,
4
(
2–3
), pp.
190
199
.
19.
Hughes
,
T. J. R.
, 1987,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
20.
Mehrabadi
,
M. M.
, and
Cowin
,
S. C.
, 1990, “
Eigentensors of Linear Anisotropic Elastic Materials
,”
Q. J. Mech. Appl. Math.
0033-5614,
43
(
1
), pp.
15
41
.
21.
Thomson
,
W.
, 1856, “
Elements of a Mathematical Theory of Elasticity
,”
Philos. Trans. R. Soc. London, Ser. B
0962-8436,
146
, pp.
481
498
.
22.
Meunier
,
A.
,
Riot
,
O.
,
Christel
,
P.
,
Katz
,
J. L.
, and
Sedel
,
L.
, 1989, “
Inhomogeneities in Anisotropic Elastic Constants of Cortical Bone
,”
Proceedings of the IEEE Ultrasonics Symposium
, Vol.
2
, pp.
1015
1018
.
23.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Properties of the Native and Glutaraldehyde-Treated Aortic Valve Cusp: Part II—A Structural Constitutive Model
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
4
), pp.
327
335
.
24.
Raghupathy
,
R.
, and
Barocas
,
V. H.
, 2009, “
A Closed-Form Structural Model of Planar Fibrous Tissue Mechanics
,”
J. Biomech.
0021-9290,
42
(
10
), pp.
1424
1428
.
25.
Draper
,
N. R.
, and
Smith
,
H.
, 1998,
Applied Regression Analysis
,
Wiley
,
New York
.
26.
Kavanagh
,
K. T.
, and
Clough
,
R. W.
, 1971, “
Finite Element Applications in the Characterization of Elastic Solids
,”
Int. J. Solids Struct.
0020-7683,
7
(
1
), pp.
11
23
.
27.
Doehring
,
T. C.
,
Kahelin
,
M.
, and
Vesely
,
I.
, 2009, “
Direct Measurement of Nonuniform Large Deformations in Soft Tissues During Uniaxial Extension
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
6
), p.
061001
.
28.
Quinn
,
K. P.
, and
Winkelstein
,
B. A.
, 2009, “
Vector Correlation Technique for Pixel-Wise Detection of Collagen Fiber Realignment During Injurious Tensile Loading
,”
J. Biomed. Opt.
1083-3668,
14
(
5
), p.
054010
.
You do not currently have access to this content.