The fracture of bone due to indentation with a hard, sharp object is of significance in surgical procedures and certain trauma situations. In the study described below, the fracture of bovine bone under indentation was measured experimentally and predicted using the theory of critical distances (TCDs), a theory, which predicts failure due to cracking in the vicinity of stress concentrations. The estimated indentation fracture force was compared with the experimental results in three different cutting directions. Under indentation, the material experiences high levels of compression and shear, causing cracks to form and grow. The direction of crack growth was highly dependent on the bone’s microstructure: major cracks grew in the weakest possible structural direction. Using a single value of the critical distance (L=320μm), combined with a multiaxial failure criterion, it was possible to predict the experimental failure loads with less than 30% errors. Some differences are expected between the behavior of human bone and the bovine bone studied here, owing to its plexiform microstructure.

1.
Carter
,
D. R.
, and
Hayes
,
W. C.
, 1977, “
Compact Bone Fatigue Damage. A Microscopic Examination
,”
Clin. Orthop. Relat. Res.
0009-921X,
127
, pp.
265
274
.
2.
Barak
,
M. M.
,
Currey
,
J. D.
,
Weiner
,
S.
, and
Shahar
,
R.
, 2009, “
Are Tensile and Compressive Young’s Moduli of Compact Bone Different?
,”
J. Mech. Behav. Biomed. Mater.
1751-6161,
2
(
1
), pp.
51
60
.
3.
Vashishth
,
D.
,
Behiri
,
J. C.
, and
Bonfield
,
W.
, 1997, “
Crack Growth Resistance in Cortical Bone: Concept of Microcrack Toughening
,”
J. Biomech.
0021-9290,
30
(
8
), pp.
763
769
.
4.
Burr
,
D. B.
,
Turner
,
C. H.
,
Naick
,
P.
,
Forwood
,
M. R.
,
Ambrosius
,
W.
,
Sayeed Hasan
,
M.
, and
Pidaparti
,
R.
, 1998, “
Does Microdamage Accumulation Affect the Mechanical Properties of Bone?
,”
J. Biomech.
0021-9290,
31
(
4
), pp.
337
345
.
5.
George
,
W. T.
, and
Vashishth
,
D.
, 2005, “
Damage Mechanisms and Failure Modes of Cortical Bone Under Components of Physiological Loading
,”
J. Orthop. Res.
0736-0266,
23
(
5
), pp.
1047
1053
.
6.
Koester
,
K. J.
,
Ager
,
J. W.
, and
Ritchie
,
R. O.
, 2008, “
The True Toughness of Human Cortical Bone Measured With Realistically Short Cracks
,”
Nature Mater.
1476-1122,
7
(
8
), pp.
672
677
.
7.
Yan
,
J.
,
Mecholsky
,
J. J. J.
, and
Clifton
,
K. B.
, 2007, “
How Tough Is Bone? Application of Elastic-Plastic Fracture Mechanics to Bone
,”
Bone
,
40
(
2
), pp.
479
484
.
8.
Bonfield
,
W.
, 1987, “
Advances in the Fracture Mechanics of Cortical Bone
,”
J. Biomech.
0021-9290,
20
(
11–12
), pp.
1071
1081
.
9.
Taylor
,
D.
, 2007,
The Theory of Critical Distances
,
Elsevier
,
New York
.
10.
Kasiri
,
S.
, and
Taylor
,
D.
, 2008, “
A Critical Distance Study of Stress Concentrations in Bone
,”
J. Biomech.
0021-9290,
41
(
3
), pp.
603
609
.
11.
Taylor
,
D.
, and
Kasiri
,
S.
, 2008, “
A Comparison of Critical Distance Methods for Fracture Prediction
,”
Int. J. Mech. Sci.
0020-7403,
50
(
6
), pp.
1075
1081
.
12.
Neuber
,
H.
, 1985,
Theory of Notch Stresses
,
Springer
,
New York
.
13.
Neuber
,
H.
, 1936, “
Theorie der technischen Formzahl
,”
Forsch. Ingenieurwes.
0015-7899,
7
, pp.
271
274
.
14.
Peterson
,
R. E.
, 1959,
Notch-Sensitivity Metal Fatigue
,
McGraw-Hill
,
New York
.
15.
Whitney
,
J. M.
, and
Nuismer
,
R. J.
, 1974, “
Stress Fracture Criteria for Laminated Composites Containing Stress-Concentrations
,”
J. Compos. Mater.
0021-9983,
8
, pp.
253
265
.
16.
Taylor
,
D.
, 2007, “
Multiaxial Loading: Fracture and Fatigue Under Complex Stress States
,”
The Theory of Critical Distances
,
Elsevier
,
Oxford
.
17.
Araujo
,
J. A.
,
Susmel
,
L.
,
Taylor
,
D.
,
Ferro
,
J. C. T.
, and
Mamiya
,
E. N.
, 2007, “
On the Use of the Theory of Critical Distances and the Modified Wohler Curve Method to Estimate Fretting Fatigue Strength of Cylindrical Contacts
,”
Int. J. Fatigue
0142-1123,
29
(
1
), pp.
95
107
.
18.
Susmel
,
L.
, and
Taylor
,
D.
, 2008, “
The Theory of Critical Distances to Predict Static Strength of Notched Brittle Components Subjected to Mixed-Mode Loading
,”
Eng. Fract. Mech.
0013-7944,
75
(
3–4
), pp.
534
550
.
19.
Ramamurthy
,
T.
, 2001, “
Shear Strength Response of Some Geological Materials in Triaxial Compression
,”
Int. J. Rock Mech. Min. Sci.
1365-1609,
38
(
5
), pp.
683
697
.
20.
Palchik
,
V.
, 2006, “
Application of Mohr-Coulomb Failure Theory to Very Porous Sandy Shales
,”
Int. J. Rock Mech. Min. Sci.
1365-1609,
43
(
7
), pp.
1153
1162
.
21.
Sweeney
,
A.
,
Byers
,
R.
, and
Kroon
,
R.
, 1965, “
Mechanical Characteristics of Bone and its Constituents
,”
ASME Human Factors Conference, 65-WA (HUF-7)
,
American Society of Mechanical Engineers
,
New York
, pp.
1
17
.
22.
Ibuki
,
S.
, 1964, “
Study on the Shearing Strength of Human and Animal Compact Bones
,”
Journal of Kyoto Prefectural University of Medicine
,
73
, pp.
495
512
.
23.
Johnson
,
W. M.
, and
Rapoff
,
A. J.
, 2007, “
Microindentation in Bone: Hardness Variation With Five Independent Variables
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
18
, pp.
591
597
.
24.
Burstein
,
A. H.
,
Currey
,
J. D.
,
Frankel
,
V. H.
, and
Reilly
,
D. T.
, 1972, “
The Ultimate Properties of Bone Tissue: The Effects of Yielding
,”
J. Biomech.
0021-9290,
5
(
1
), pp.
35
42
, IN1–IN2, 43–44.
25.
Reilly
,
D. T.
, and
Burstein
,
A. H.
, 1974, “
The Mechanical Properties of Cortical Bone
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
56
(
5
), pp.
1001
1022
.
26.
Lawn
,
B. R.
, 1975,
Fracture of Brittle Solids
,
Press Syndicate of the University of Cambridge
,
Cambridge, England
.
27.
Lawn
,
B. R.
, and
Wilshaw
,
R.
, 1975, “
Review Indentation Fracture: Principles and Applications
,”
J. Mater. Sci.
0022-2461,
10
, pp.
1049
1081
.
28.
Puttick
,
K. E.
, 1978, “
The Mechanics of Indentation Fracture in Poly(Methyl Methacrylate)
,”
J. Phys. D
0022-3727,
11
(
4
), pp.
595
604
.
29.
Behiri
,
J. C.
, and
Bonfield
,
W.
, 1989, “
Orientation Dependence of the Fracture Mechanics of Cortical Bone
,”
J. Biomech.
0021-9290,
22
(
8–9
), pp.
863
872
.
30.
Zioupos
,
P.
,
Gresle
,
M.
, and
Winwood
,
K.
, 2008, “
Fatigue Strength of Human Cortical Bone: Age, Physical, and Material Heterogeneity Effects
,”
J. Biomed. Mater. Res. A
,
86A
(
3
), pp.
627
636
.
31.
O’Brien
,
F. J.
,
Taylor
,
D.
, and
Lee
,
T. C.
, 2005, “
The Effect of Bone Microstructure on the Initiation and Growth of Microcracks
,”
J. Orthop. Res.
0736-0266,
23
(
2
), pp.
475
480
.
32.
Nalla
,
R. K.
,
Kruzic
,
J. J.
, and
Ritchie
,
R. O.
, 2004, “
On the Origin of the Toughness of Mineralized Tissue: Microcracking or Crack Bridging?
,”
Bone
,
34
(
5
), pp.
790
798
.
33.
Ritchie
,
R. O.
,
Kinney
,
J. H.
,
Kruzic
,
J. J.
, and
Nalla
,
R. K.
, 2005, “
A Fracture Mechanics and Mechanistic Approach to the Failure of Cortical Bone
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
28
(
4
), pp.
345
371
.
34.
Wang
,
X.
, and
Agrawal
,
C. M.
, 1996, “
Fracture Toughness of Bone Using a Compact Sandwich Specimen: Effects of Sampling Sites and Crack Orientations
,”
J. Biomed. Mater. Res.
0021-9304,
33
(
1
), pp.
13
21
.
35.
King
,
M. J.
, 1999, “
Knife and Impact Cutting of Lamb Bone
,”
Meat Sci.
0309-1740,
52
(
1
), pp.
29
38
.
36.
Wiggins
,
K. L.
, and
Malkin
,
S.
, 1976, “
Drilling of Bone
,”
J. Biomech.
0021-9290,
9
(
9
), pp.
553
559
.
37.
Taylor
,
D.
, 2008, “
Microstructural Parameters in the Theory of Critical Distances
,”
Mater. Sci. Forum
0255-5476,
567–568
, pp.
23
28
.
38.
Nalla
,
R. K.
,
Kinney
,
J. H.
, and
Ritchie
,
R. O.
, 2003, “
Mechanistic Fracture Criteria for the Failure of Human Cortical Bone
,”
Nature Mater.
1476-1122,
2
(
3
), pp.
164
168
.
39.
Krause
,
W. R.
, 1987, “
Orthogonal Bone Cutting: Saw Design and Operating Characteristics
,”
ASME J. Biomech. Eng.
0148-0731,
109
(
3
), pp.
263
271
.
40.
Giraud
,
J. Y.
,
Villemin
,
S.
,
Darmana
,
R.
,
Cahuzac
,
J. P.
,
Autefage
,
A.
, and
Morucci
,
J. P.
, 1991, “
Bone Cutting
,”
Clin. Phys. Physiol. Meas.
0143-0815,
12
(
1
), pp.
1
19
.
41.
Plaskos
,
C.
,
Hodgson
,
A.
, and
Cinquin
,
P.
, 2003, “
Modelling and Optimization of Bone-Cutting Forces in Orthopaedic Surgery
,”
Medical Image Computing and Computer-Assisted Intervention— Miccai 2003
,
Springer
,
Berlin, Heidelberg
.
42.
Parsamian
,
G. P.
, and
Norman
,
T. L.
, 2001, “
Diffuse Damage Accumulation in the Fracture Process Zone of Human Cortical Bone Specimens and Its Influence on Fracture Toughness
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
12
(
9
), pp.
779
783
.
43.
Vashishth
,
D.
,
Tanner
,
K. E.
, and
Bonfield
,
W.
, 2003, “
Experimental Validation of a Microcracking-Based Toughening Mechanism for Cortical Bone
,”
J. Biomech.
0021-9290,
36
(
1
), pp.
121
124
.
44.
Vashishth
,
D.
,
Koontz
,
J.
,
Qiu
,
S. J.
,
Lundin-Cannon
,
D.
,
Yeni
,
Y. N.
,
Schaffler
,
M. B.
, and
Fyhrie
,
D. P.
, 2000, “
In Vivo Diffuse Damage in Human Vertebral Trabecular Bone
,”
Bone
,
26
(
2
), pp.
147
152
.
45.
Schaffler
,
M. B.
,
Pitchford
,
W. C.
,
Choi
,
K.
, and
Riddle
,
J. M.
, 1994, “
Examination of Compact Bone Microdamage Using Back-Scattered Electron Microscopy
,”
Bone
,
15
(
5
), pp.
483
488
.
46.
Kasiri
,
S.
,
Reilly
,
G.
, and
Taylor
,
D.
, 2007, “
Simulation of Bone Indentation
,”
Biomedicine and Health
,
Wessex Institute of Technology
,
UK
, Vol.
12
.
47.
Reilly
,
D. T.
, and
Burstein
,
A. H.
, 1975, “
The Elastic and Ultimate Properties of Compact Bone Tissue
,”
J. Biomech.
0021-9290,
8
(
6
), pp.
393
405
.
48.
Susmel
,
L.
, and
Taylor
,
D.
, 2008, “
On the Use of the Theory of Critical Distances to Predict Static Failures in Ductile Metallic Materials Containing Different Geometrical Features
,”
Eng. Fract. Mech.
0013-7944,
75
(
15
), pp.
4410
4421
.
You do not currently have access to this content.