The annulus fibrosus of the intervertebral disk experiences multidirectional tension in vivo, yet the majority of mechanical property testing has been uniaxial. Therefore, our understanding of how this complex multilayered tissue responds to loading may be deficient. This study aimed to determine the mechanical properties of porcine annular samples under uniaxial and biaxial tensile loading. Two-layer annulus samples were isolated from porcine disks from four locations: anterior superficial, anterior deep, posterior superficial, and posterior deep. These tissues were then subjected to three deformation conditions each to a maximal stretch ratio of 1.23: uniaxial, constrained uniaxial, and biaxial. Uniaxial deformation was applied in the circumferential direction, while biaxial deformation was applied simultaneously in the circumferential and compressive directions. Constrained uniaxial consisted of a stretch ratio of 1.23 in the circumferential direction while holding the tissue stationary in the axial direction. The maximal stress and stress-stretch ratio (S-S) moduli determined from the biaxial tests were significantly higher than those observed during both the uniaxial tests (maximal stress, 97.1% higher during biaxial; p=0.002; S-S moduli, 117.9% higher during biaxial; p=0.0004) and the constrained uniaxial tests (maximal stress, 46.8% higher during biaxial; S-S moduli, 82.9% higher during biaxial). These findings suggest that the annulus is subjected to higher stresses in vivo when under multidirectional tension.

1.
Eyre
,
D. R.
, and
Muir
,
H.
, 1976, “
Type-1 and Type-2 Collagens in Intervertebral-Disk—Interchanging Radial Distributions in Annulus Fibrosus
,”
Biochem. J.
0264-6021,
157
, pp.
267
270
.
2.
Hayes
,
A. J.
,
Benjamin
,
M.
, and
Ralphs
,
J. R.
, 2001, “
Extracellular Matrix in Development of the Intervertebral Disc
,”
Matrix Biol.
0945-053X,
20
, pp.
107
121
.
3.
Klein
,
J. A.
, and
Hukins
,
D. W. L.
, 1982, “
X-Ray-Diffraction Demonstrates Reorientation of Collagen-Fibers in the Annulus Fibrosus During Compression of the Intervertebral-Disk
,”
Biochim. Biophys. Acta
0006-3002,
717
, pp.
61
64
.
4.
Cassidy
,
J. J.
,
Hiltner
,
A.
, and
Baer
,
E.
, 1989, “
Hierarchical Structure of the Intervertebral-Disk
,”
Connect. Tissue Res.
0300-8207,
23
, pp.
75
88
.
5.
Guerin
,
H. A. L.
, and
Elliott
,
D. M.
, 2006, “
Degeneration Affects the Fiber Reorientation of Human Annulus Fibrosus Under Tensile Load
,”
J. Biomech.
0021-9290,
39
, pp.
1410
1418
.
6.
Inoue
,
H.
, 1981, “
3-Dimensional Architecture of Lumbar Intervertebral Disks
,”
Spine
0362-2436,
6
, pp.
139
146
.
7.
Johnson
,
E. F.
,
Chetty
,
K.
,
Moore
,
I. M.
,
Stewart
,
A.
, and
Jones
,
W.
, 1981, “
The Distribution and Arrangement of Elastic Fibers in the Intervertebral-Disk of the Adult Human
,”
J. Anat.
0021-8782,
135
, pp.
301
309
.
8.
Inerot
,
S.
, and
Axelsson
,
I.
, 1991, “
Structure and Composition of Proteoglycans From Human Annulus Fibrosus
,”
Connect. Tissue Res.
0300-8207,
26
, pp.
47
63
.
9.
Holzapfel
,
G. A.
,
Schulze-Bauer
,
C. A. J.
,
Feigl
,
G.
, and
Regitnig
,
P.
, 2005, “
Single Lamellar Mechanics of the Human Lumbar Anulus Fibrosus
,”
Biomech. Model. Mechanobiol.
1617-7959,
3
, pp.
125
140
.
10.
Adams
,
M. A.
, and
Green
,
T. P.
, 1993, “
Tensile Properties of the Annulus Fibrosus. I. The Contribution of Fibre-Matrix Interactions to Tensile Stiffness and Strength
,”
Eur. Spine J.
0940-6719,
2
, pp.
203
208
.
11.
Green
,
T. P.
,
Adams
,
M. A.
, and
Dolan
,
P.
, 1993, “
Tensile Properties Of The Annulus Fibrosus. II. Ultimate Tensile Strength And Fatigue Life
,”
Eur. Spine J.
0940-6719,
2
, pp.
209
214
.
12.
Ebara
,
S.
,
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Mow
,
V. C.
, and
Weidenbaum
,
M.
, 1996, “
Tensile Properties of Nondegenerate Human Lumbar Anulus Fibrosus
,”
Spine
0362-2436,
21
, pp.
452
461
.
13.
Pezowicz
,
C. A.
,
Robertson
,
P. A.
, and
Broom
,
N. D.
, 2005, “
Intralamellar Relationships Within the Collagenous Architecture of the Annulus Fibrosus Imaged in Its Fully Hydrated State
,”
J. Anat.
0021-8782,
207
, pp.
299
312
.
14.
Skaggs
,
D. L.
,
Weidenbaum
,
M.
,
Iatridis
,
J. C.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
, 1994, “
Regional Variation in Tensile Properties and Biochemical Composition of the Human Lumbar Anulus Fibrosus
,”
Spine
0362-2436,
19
, pp.
1310
1319
.
15.
Shirazi-Adl
,
A.
,
Shrivastava
,
S. C.
, and
Ahmed
,
A. M.
, 1984, “
Stress Analysis of the Lumbar Disc-Body Unit in Compression. A Three-Dimensional Nonlinear Finite Element Study
,”
Spine
0362-2436,
9
, pp.
120
134
.
16.
Stokes
,
I. A.
, 1987, “
Surface Strain on Human Intervertebral Discs
,”
J. Orthop. Res.
0736-0266,
5
, pp.
348
355
.
17.
McNally
,
D. S.
, and
Adams
,
M. A.
, 1992, “
Internal Intervertebral Disc Mechanics as Revealed by Stress Profilometry
,”
Spine
0362-2436,
17
, pp.
66
73
.
18.
Edwards
,
W. T.
,
Ordway
,
N. R.
,
Zheng
,
Y.
,
McCullen
,
G.
,
Han
,
Z.
, and
Yuan
,
H. A.
, 2001, “
Peak Stresses Observed in the Posterior Lateral Annulus
,”
Spine
0362-2436,
26
, pp.
1753
1759
.
19.
van Deursen
,
D. L.
,
Snijders
,
C. J.
,
Kingma
,
I.
, and
van Dieen
,
J. H.
, 2001, “
In Vitro Torsion-Induced Stress Distribution Changes in Porcine Intervertebral Discs
,”
Spine
0362-2436,
26
, pp.
2582
2586
.
20.
Grashow
,
J. S.
,
Yoganathan
,
A. P.
, and
Sacks
,
M. S.
, 2006, “
Biaxial Stress-Stretch Behavior of the Mitral Valve Anterior Leaflet at Physiologic Strain Rates
,”
Ann. Biomed. Eng.
0090-6964,
34
, pp.
315
325
.
21.
May-Newman
,
K.
, and
Yin
,
F. C. P.
, 1995, “
Biaxial Mechanical Behavior of Excised Porcine Mitral Valve Leaflets
,”
Am. J. Physiol.
0002-9513,
269
, pp.
H1319
H1327
.
22.
Sacks
,
M. S.
, and
Chuong
,
C. J.
, 1998, “
Orthotropic Mechanical Properties of Chemically Treated Bovine Pericardium
,”
Ann. Biomed. Eng.
0090-6964,
26
, pp.
892
902
.
23.
Lee
,
M. C.
,
LeWinter
,
M. M.
,
Freeman
,
G.
,
Shabetai
,
R.
, and
Fung
,
Y. C.
, 1985, “
Biaxial Mechanical Properties of the Pericardium in Normal and Volume Overload Dogs
,”
Am. J. Physiol.
0002-9513,
249
, pp.
H222
H230
.
24.
Debes
,
J. C.
, and
Fung
,
Y. C.
, 1992, “
Effect of Temperature on the Biaxial Mechanics of Excised Lung Parenchyma of the Dog
,”
J. Appl. Physiol.
0021-8987,
73
, pp.
1171
1180
.
25.
Debes
,
J. C.
, and
Fung
,
Y. C.
, 1995, “
Biaxial Mechanics of Excised Canine Pulmonary Arteries
,”
Am. J. Physiol.
0002-9513,
269
, pp.
H433
H442
.
26.
Bruehlmann
,
S. B.
,
Hulme
,
P. A.
, and
Duncan
,
N. A.
, 2004, “
In Situ Intercellular Mechanics of the Bovine Outer Annulus Fibrosus Subjected to Biaxial Strains
,”
J. Biomech.
0021-9290,
37
, pp.
223
231
.
27.
Bass
,
E. C.
,
Ashford
,
F. A.
,
Segal
,
M. R.
, and
Lotz
,
J. C.
, 2004, “
Biaxial Testing of Human Annulus Fibrosus and Its Implications for a Constitutive Formulation
,”
Ann. Biomed. Eng.
0090-6964,
32
, pp.
1231
1242
.
28.
Yingling
,
V. R.
,
Callaghan
,
J. P.
, and
McGill
,
S. M.
, 1999, “
The Porcine Cervical Spine as a Model of the Human Lumbar Spine: An Anatomical, Geometric, and Functional Comparison
,”
J. Spinal Disord.
0895-0385,
12
, pp.
415
423
.
29.
Oxland
,
T. R.
,
Panjabi
,
M. M.
,
Southern
,
E. P.
, and
Duranceau
,
J. S.
, 1991, “
An Anatomic Basis for Spinal Instability: A Porcine Trauma Model
,”
J. Orthop. Res.
0736-0266,
9
, pp.
452
462
.
30.
Marchand
,
F.
, and
Ahmed
,
A. M.
, 1990, “
Investigation of the Laminate Structure of Lumbar-Disk Anulus Fibrosus
,”
Spine
0362-2436,
15
, pp.
402
410
.
31.
Tampier
,
C.
, 2006, “
Progressive Disc Herniation: An Investigation of the Mechanism Using Histochemical and Microscopic Techniques
,” MS thesis, University of Waterloo, Waterloo, ON, Canada.
You do not currently have access to this content.