Using a continuum approach for modeling the constitutive mechanical behavior of the intervertebral disk’s annulus fibrosus holds the potential for facilitating the correlation of morphology and biomechanics of this clinically important tissue. Implementation of a continuum representation of the disk’s tissues into computational models would yield a particularly valuable tool for investigating the effects of degenerative disease. However, to date, relevant efforts in the literature towards this goal have been limited due to the lack of a computationally tractable and implementable constitutive function. In order to address this, annular specimens harvested from a total of 15 healthy and degenerated intervertebral disks were tested under planar biaxial tension. Predictions of a strain energy function, which was previously shown to be unconditionally convex, were fit to the experimental data, and the optimized coefficients were used to modify a previously validated finite element model of the L4/L5 functional spinal unit. Optimization of material coefficients based on experimental results indicated increases in the micro-level orientation dispersion of the collagen fibers and the mechanical nonlinearity of these fibers due to degeneration. On the other hand, the finite element model predicted a progressive increase in the stress generation in annulus fibrosus due to stepwise degeneration of initially the nucleus and then the entire disk. Range of motion was predicted to initially increase with the degeneration of the nucleus and then decrease with the degeneration of the annulus in all rotational loading directions, except for axial rotation. Overall, degeneration was observed to specifically impact the functional effectiveness of the collagen fiber network of the annulus, leading to changes in the biomechanical behavior at both the tissue level and the motion-segment level.

References

1.
Stokes
,
I. A. F.
, and
Iatridis
,
J. C.
, 2005, “
Biomechanics of the Spine
,”
Basic Orthopaedic Biomechanics and Mechano-Biology
,
V. C.
Mow
and
R.
Huiskes
, eds.,
Lippincott Williams
,
Wilkins, Philadelphia, PA
, pp.
196
197
.
2.
Guerin
,
H. A.
, and
Elliott
,
D. M.
, 2006, “
Degeneration Affects the Fiber Reorientation of Human Annulus Fibrosus Under Tensile Load
,”
J. Biomech.
,
39
(
8
), pp.
1410
1418
.
3.
Klisch
,
S. M.
, and
Lotz
,
J. C.
, 1999, “
Application of a Fiber-Reinforced Continuum Theory to Multiple Deformations of the Annulus Fibrosus
,”
J. Biomech.
,
32
(
10
), pp.
1027
1036
.
4.
Shirazi-Adl
,
S. A.
,
Shrivastava
,
S. C.
, and
Ahmed
,
A. M.
, 1984, “
Stress Analysis of the Lumbar Disc-Body Unit in Compression. A Three-Dimensional Nonlinear Finite Element Study
,”
Spine
,
9
, pp.
120
134
.
5.
Dooris
,
A. P.
,
Goel
,
V. K.
,
Grosland
,
N. M.
,
Gilbertson
,
L. G.
, and
Wilder
,
D. G.
, 2001, “
Load Sharing Between Anterior and Posterior Elements in a Lumbar Motion Segment Implanted With an Artificial Disc
,”
Spine
,
26
(
6
), pp.
E122
E129
.
6.
Zander
,
T.
,
Rohlmann
,
A.
,
Klöckner
,
C.
, and
Bergmann
,
G.
, 2001, “
Effect of Bone Graft Characteristics on the Mechanical Behavior of the Lumbar Spine
,”
Clin. Biomech.
,
35
, pp.
S73
S80
.
7.
Wagner
,
D. R.
, and
Lotz
,
J. C.
, 2004, “
Theoretical Model and Experimental Results for the Nonlinear Elastic Behavior of Human Annulus Fibrosus
,”
J. Orthop. Res.
,
22
, pp.
901
909
.
8.
Guerin
,
H. L.
, and
Elliott
,
D. M.
, 2007, “
Quantifying the Contributions of Structure to Annulus Fibrosus Mechanical Function Using a Nonlinear, Anisotropic, Hyperelastic Model
,”
J. Orthop. Res.
,
25
(
4
), pp.
508
516
.
9.
O’Connell
,
G. D.
,
Guerin
,
H. L.
, and
Elliott
,
D. M.
, 2009, “
Theoretical and Uniaxial Experimental Evaluation of Human Annulus Fibrosus Degeneration
,”
J. Biomech. Eng.
,
131
, p.
111007
.
10.
Gregory
,
D. E.
, and
Callaghan
,
J. P.
, 2011, “
A Comparison of Uniaxial and Biaxial Mechanical Properties of the Annulus Fibrosus: A Porcine Model
,”
J. Biomech. Eng.
,
133
, p.
024503
.
11.
O’Connell
,
G. D.
,
Sen
,
S.
, and
Elliott
,
D. M.
, 2012, “
Human Annulus Fibrosus Material Properties From Biaxial Testing and Constitutive Modeling are Altered With Degeneration
,”
Biomech. Model. Mechanobiol.
,
11
, pp.
493
503
.
12.
Spencer
,
A. J. M.
, 1984,
Continuum Theory of the Mechanics of Fibre-Reinforced Composites
,
Springer
Verlag,
New York
, pp.
1
32
.
13.
Guerin
,
H. L.
, and
Elliott
,
D. M.
, 2006, “
Structure and Properties of Soft Tissues in the Spine
,”
SPINE Technology Handbook
,
S. M.
Kurtz
and
A. A.
Edidin
, eds.,
Elsevier
,
London
, pp.
35
62
.
14.
Eberlein
,
R.
,
Holzapfel
,
G. A.
, and
Schulze-Bauer
,
C. A. J.
, 2001, “
An Anisotropic Model for Annulus Tissue and Enhanced Finite Element Analyses of Intact Lumbar Disc Bodies
,”
Comput. Methods Biomech. Biomed. Engin.
,
4
, pp.
209
230
.
15.
Ayturk
,
U. M.
,
Garcia
,
J. J.
, and
Puttlitz
,
C. M.
, 2010, “
The Micromechanical Role of the Annulus Fibrosus Components Under Physiological Loading of the Lumbar Spine
,”
J. Biomech. Eng.
,
132
, p.
061007
.
16.
Rohlmann
,
A.
,
Zander
,
T.
,
Schmidt
,
H.
,
Wilke
,
H. J.
, and
Bergmann
,
G.
, 2006, “
Analysis of the Influence of Disc Degeneration on the Mechanical Behaviour of a Lumbar Motion Segment Using the Finite Element Method
,”
J. Biomech.
,
39
, pp.
2484
2490
.
17.
Schmidt
,
H.
,
Kettler
,
A.
,
Rohlmann
,
A.
,
Claes
,
L.
, and
Wilke
,
H. J.
, 2007, “
The Risk of Disc Prolapses With Complex Loading in Different Degrees of Disc Degeneration—A Finite Element Analysis
,”
Clin. Biomech.
,
22
, pp.
988
998
.
18.
Chagnon
,
A.
,
Aubin
,
C. E.
, and
Villemure
,
I.
, 2010, “
Biomechanical Influence of Disk Properties on the Load Transfer of Healthy and Degenerated Disks Using a Poroelastic Finite Element Model
,”
J. Biomech. Eng.
,
132
, p.
111006
.
19.
Galbusera
,
F.
,
Schmidt
,
H.
,
Neidlinger-Wilke
,
C.
,
Gottschalk
,
A.
, and
Wilke
,
H. J.
, 2011, “
The Mechanical Response of the Lumbar Spine to Different Combinations of Disc Degenerative Changes Investigated Using Randomized Poroelastic Finite Element Models
,”
Eur. Spine J.
,
20
, pp.
563
571
.
20.
Hussain
,
M.
,
Natarajan
,
R. N.
,
An
,
H. S.
, and
Andersson
,
G. B.
, 2010, “
Motion Changes in Adjacent Segments Due to Moderate and Severe Degeneration in C5-C6 Disc: A Poroelastic C3-T1 Finite Element Model Study
,”
Spine
,
35
, pp.
939
947
.
21.
Schmidt
,
H.
,
Heuer
,
F.
, and
Wilke
,
H. J.
, 2009, “
Dependency of Disc Degeneration on Shear and Tensile Strains Between Annular Fiber Layers for Complex Loads
,”
Med. Eng. Phys.
,
31
, pp.
642
649
.
22.
Ruberté
,
L. M.
,
Natarajan
,
R. N.
, and
Andersson
,
G. B.
, 2009, “
Influence of Single-Level Lumbar Degenerative Disc Disease on the Behavior of the Adjacent Segments–A Finite Element Model Study
,”
J. Biomech.
,
42
, pp.
341
348
.
23.
Williams
,
J. R.
,
Natarajan
,
R. N.
, and
Andersson
,
G. B.
, 2007, “
Inclusion of Regional Poroelastic Material Properties Better Predicts Biomechanical Behavior of Lumbar Discs Subjected to Dynamic Loading
,”
J. Biomech.
,
40
, pp.
1981
1987
.
24.
Zander
,
T.
,
Rohlmann
,
A.
,
Burra
,
N. K.
, and
Bergmann
,
G.
, 2006, “
Effect of a Posterior Dynamic Implant Adjacent to a Rigid Spinal Fixator
,”
Clin. Biomech.
,
21
, pp.
767
774
.
25.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
, 2009, “
On Planar Biaxial Tests for Anisotropic Nonlinearly Elastic Solids. A Continuum Mechanical Framework
,”
Math. Mech. Solid.
,
14
, pp.
474
489
.
26.
Sacks
,
M.
, and
Chuong
,
C.
, 1993, “
Biaxial Mechanical Properties of Passive Right Ventricular Free Wall Myocardium
,”
J. Biomech. Eng.
,
115
, pp.
202
205
.
27.
Sacks
,
M. S.
, and
Sun
,
W.
, 2003, “
Multiaxial Mechanical Behavior of Biological Materials
,”
Annu. Rev. Biomed. Eng.
,
5
, pp.
251
284
.
28.
Bass
,
E. C.
,
Ashford
,
F. A.
,
Segal
,
M. R.
, and
Lotz
,
J. C.
, 2004, “
Biaxial Testing of Human Annulus Fibrosus and its Implications for a Constitutive Formulation
,”
Ann. Biomed. Eng.
,
32
, pp.
1231
1242
.
29.
Johannessen
,
W.
, and
Elliott
,
D. M.
, 2005, “
Effects of Degeneration on the Biphasic Material Properties of Human Nucleus Pulposus in Confined Compression
,”
Spine
,
30
, pp.
E724
E729
.
30.
Thompson
,
J. P.
,
Pearce
,
R. H.
,
Schechter
,
M. T.
,
Adams
,
M. E.
,
Tsang
,
I. K.
, and
Bishop
,
P. B.
, 1990, “
Preliminary Evaluation of a Scheme for Grading the Gross Morphology of the Human Intervertebral Disc
,”
Spine
,
15
, pp.
411
415
.
31.
Fujita
,
Y.
,
Duncan
,
N. A.
, and
Lotz
,
J. C.
, 1997, “
Radial Tensile Properties of the Lumbar Annulus Fibrosus are Site and Degeneration Dependent
,”
J. Orthop. Res.
,
15
(
6
), pp.
814
819
.
32.
Sun
,
W.
,
Sacks
,
M. S.
, and
Scott
,
M. J.
, 2005, “
Effects of Boundary Conditions on the Estimation of the Planar Biaxial Mechanical Properties of Soft Tissues
,”
J. Biomech. Eng.
,
127
, pp.
709
715
.
33.
McGilvray
,
K. C.
,
Sarkar
,
R.
,
Nguyen
,
K.
, and
Puttlitz
,
C. M.
, 2010, “
A Biomechanical Analysis of Venous Tissue in its Normal and Post-Phlebitic Conditions
,”
J. Biomech.
,
43
, pp.
2941
2947
.
34.
Holzapfel
,
G. A.
, 2000,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley, West Sussex
,
UK
.
35.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
, 2006, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc., Interface.
,
3
, pp.
15
35
.
36.
Ueno
,
K.
, and
Liu
,
Y. K.
, 1987, “
A Three Dimensional Nonlinear Finite Element Model of Lumbar Intervertebral Joint in Torsion
,”
J. Biomech. Eng.
,
109
(
3
), pp.
200
209
.
37.
Crawford
,
R. P.
,
Rosenberg
,
W. S.
, and
Keaveny
,
T. M.
, 2003, “
Quantitative Computed Tomography Based Finite Element Models of the Human Lumbar Vertebral Body: Effect of Element Size on Stiffness, Damage, and Fracture Strength Predictions
,”
J. Biomech. Eng.
,
125
(
4
), pp.
434
438
.
38.
Whyne
,
C. M.
,
Hu
,
S. S.
, and
Lotz
,
J. C.
, 2001, “
Parametric Finite Element Analysis of Vertebral Bodies Affected by Tumors
,”
J. Biomech.
,
34
(
10
), pp.
1317
1324
.
39.
Noailly
,
J.
,
Lacroix
,
D.
, and
Planell
,
J. A.
, 2005, “
Finite Element Study of a Novel Intervertebral Disc Substitute
,”
Spine
,
30
(
20
), pp.
2257
2264
.
40.
Lu
,
Y. M.
,
Hutton
,
W. C.
, and
Gharpuray
,
V. M.
, 1996, “
Do Bending, Twisting, and Diurnal Fluid Changes in the Disc Affect the Propensity to Prolapse? A Viscoelastic Finite Element Model
,”
Spine
,
21
(
22
), pp.
2570
2579
.
41.
Bernick
,
S.
, and
Cailliet
,
R.
, 1982, “
Vertebral Endplate Changes With Aging of Human Vertebrae
,”
Spine
,
7
, pp.
97
102
.
42.
Smith
,
L. J.
,
Byers
,
S.
,
Costi
,
J. J.
, and
Fazzalari
,
N. L.
, 2008, “
Elastic Fibers Enhance the Mechanical Integrity of the Human Lumbar Anulus Fibrosus in the Radial Direction
,”
Ann. Biomed. Eng.
,
36
, pp.
214
223
.
43.
Acaroglu
,
E. R.
,
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Mow
,
V. C.
, and
Weidenbaum
,
M.
, 1995, “
Degeneration and Aging Affect the Tensile Behavior of Human Lumbar Anulus Fibrosus
,”
Spine.
,
20
, pp.
2690
2701
.
44.
Marchand
,
F.
, and
Ahmed
,
A. M.
, 1990, “
Investigation of the Laminate Structure of Lumbar Disc Anulus Fibrosus
,”
Spine.
,
15
, pp.
402
410
.
45.
Weiss
,
J. A.
,
Maker
,
B. N.
, and
Govindjee
,
S.
, 1996, “
Finite Element Implementation of Incompressible, Transversely Isotropic Hyperelasticity
,”
Comput. Methods Appl. Mech. Eng.
,
135
(
1
), pp.
107
128
.
46.
Krismer
,
M.
,
Haid
,
C.
,
Behensky
,
H.
,
Kapfinger
,
P.
,
Landauer
,
F.
, and
Rachbauer
,
F.
, 2000, “
Motion in Lumbar Functional Spine Units During Side Bending and Axial Rotation Moments Depending on the Degree of Degeneration
,”
Spine
,
25
, pp.
2020
2027
.
47.
Kettler
,
A.
,
Rohlmann
,
F.
,
Ring
,
C.
,
Mack
,
C.
, and
Wilke
,
H. J.
, 2011, “
Do Early Stages of Lumbar Intervertebral Disc Degeneration Really Cause Instability? Evaluation of an In Vitro Database
,”
Eur. Spine J.
,
20
, pp.
578
584
.
48.
Roughley
,
P. J.
, 2004, “
Biology of Intervertebral Disc Aging and Degeneration
,”
Spine
,
29
, pp.
2691
2699
.
49.
Bass
,
E. C.
,
Duncan
,
N. A.
,
Hariharan
,
J. S.
,
Dusick
,
J.
,
Bueff
,
H. U.
, and
Lotz
,
J. C.
, 1997, “
Frozen Storage Affects the Compressive Creep Behavior of the Porcine Intervertebral Disc
,”
Spine
,
22
, pp.
2867
2876
.
50.
Hongo
,
M.
,
Gay
,
R. E.
,
Hsu
,
J. T.
,
Zhao
,
K. D.
,
Ilharreborde
,
B.
,
Berglund
,
L. J.
, and
An
,
K. N.
, 2008, “
Effect of Multiple Freeze-Thaw Cycles on Intervertebral Dynamic Motion Characteristics in the Porcine Lumbar Spine
,”
J. Biomech.
,
41
, pp.
916
920
.
51.
Galante
,
J. O.
, 1967, “
Tensile Properties of the Human Lumbar Annulus Fibrosus
,”
Acta Orthop. Scand.
,
100
(
suppl.
), pp.
1
91
.
52.
Lotz
,
J. C.
,
Hadi
,
T.
,
Bratton
,
C.
,
Reiser
,
K. M.
, and
Hsieh
,
A. H.
, 2008, “
Anulus Fibrosus Tension Inhibits Degenerative Structural Changes in Lamellar Collagen
,”
Eur. Spine J.
,
17
, pp.
1149
1159
.
53.
Rodriguez
,
A. G.
,
Slichter
,
C. K.
,
Acosta
,
F. L.
,
Rodriguez-Soto
,
A. E.
,
Burghardt
,
A. J.
,
Majumdar
,
S.
and
Lotz
,
J. C.
, 2011, “
Human Disc Nucleus Properties and Vertebral Endplate Permeability
,”
Spine
,
36
, pp.
512
520
.
54.
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
, 1997, “
Alterations in the Mechanical Behavior of the Human Lumbar Nucleus Pulposus With Degeneration and Aging
,”
J. Orthop. Res.
,
15
, pp.
318
322
.
55.
Boxberger
,
J. I.
,
Orlansky
,
A. S.
,
Sen
,
S.
, and
Elliott
,
D. M.
, 2009, “
Reduced Nucleus Pulposus Glycosaminoglycan Content Alters Intervertebral Disc Dynamic Viscoelastic Mechanics
,”
J. Biomech.
,
42
, pp.
1941
1946
.
You do not currently have access to this content.