Excessive tissue-level forces communicated to the microstructure and extracellular matrix of soft tissues can lead to damage and failure through poorly understood physical processes that are multiscale in nature. In this work, we propose a multiscale mechanical model for the failure of collagenous soft tissues that incorporates spatial heterogeneity in the microstructure and links the failure of discrete collagen fibers to the material response of the tissue. The model, which is based on experimental failure data derived from different collagen gel geometries, was able to predict the mechanical response and failure of type I collagen gels, and it demonstrated that a fiber-based rule (at the micrometer scale) for discrete failure can strongly shape the macroscale failure response of the gel (at the millimeter scale). The model may be a useful tool in predicting the macroscale failure conditions for soft tissues and engineered tissue analogs. In addition, the multiscale model provides a framework for the study of failure in complex fiber-based mechanical systems in general.

References

1.
Quinn
,
K. P.
, and
Winkelstein
,
B. A.
, 2011, “
Detection of Altered Collagen Fiber Alignment in the Cervical Facet Capsule After Whiplash-Like Joint Retraction
,”
Ann. Biomed. Eng.
,
39
(
8
), pp.
2163
2173
.
2.
Phillippi
,
J. A.
,
Pasta
,
S.
, and
Vorp
,
D. A.
, 2011, “
Biomechanics and Pathobiology of Aortic Aneurysms
,”
Biomech. Mechanobiol. Aneurysms
,
7
, pp.
67
118
.
3.
Hurschler
,
C.
,
Loitz-Ramage
,
B.
, and
Vanderby
,
R.
, Jr
., 1997, “
A Structurally Based Stress-Stretch Relationship for Tendon and Ligament
,”
J. Biomech. Eng.
,
119
(
4
), pp.
392
400
.
4.
Wren
,
T. A.
,
Yerby
,
S. A.
,
Beaupré
,
G. S.
, and
Carter
,
D. R.
, 2001, “
Mechanical Properties of the Human Achilles Tendon
,”
Clin. Biomech. (Bristol, Avon)
,
16
(
3
), pp.
245
251
.
5.
Liao
,
H.
, and
Belkoff
,
S. M.
, 1999, “
A Failure Model for Ligaments
,”
J. Biomech.
,
32
(
2
), pp.
183
188
.
6.
De Vita
,
R.
, and
Slaughter
,
W. S.
, 2007, “
A Constitutive Law for the Failure Behavior of Medial Collateral Ligaments
,”
Biomech. Model. Mechanobiol.
,
6
(
3
), pp.
189
197
.
7.
Ritter
,
M. C.
,
Jesudason
,
R.
,
Majumdar
,
A.
,
Stamenović
,
D.
,
Buczek-Thomas
,
J. A.
,
Stone
,
P. J.
,
Nugent
,
M. A.
,
Suki
,
B.
, 2009, “
A Zipper Network Model of the Failure Mechanics of Extracellular Matrices
,”
Proc. Natl. Acad. Sci. U.S.A.
,
106
(
4
), pp.
1081
1086
.
8.
Keten
,
S.
,
Bertaud
,
J.
,
Sen
,
D.
,
Xu
,
Z.
,
Ackbarow
,
T.
, and
Buehler
,
M. J.
, 2010, “
Multiscale Modeling of Biological Protein Materials–Deformation and Failure
,”
Trends Comput. Nanomech.
,
9
, pp.
473
533
.
9.
Ackbarow
,
T.
,
Sen
,
D.
,
Thaulow
,
C.
, and
Buehler
,
M. J.
, 2009, “
Alpha-Helical Protein Networks are Self-Protective and Flaw-Tolerant
,”
PLoS ONE
,
4
(
6
), p.
e6015
.
10.
Sastry
,
A.
,
Cheng
,
X.
, and
Wang
,
C.
, 1998, “
Mechanics of Stochastic Fibrous Networks
,”
J. Thermoplast. Compos. Mater.
,
3
(
11
), pp.
288
296
.
11.
Wang
,
C. W.
, and
Sastry
,
A. M.
, 2000, “
Structure, Mechanics and Failure of Stochastic Fibrous Networks: Part II—Network Simulations and Application
,”
J. Eng. Mater. Technol.
,
122
, pp.
460
469
.
12.
Zohdi
,
T.
, 2007, “
A Computational Framework for Network Modeling of Fibrous Biological Tissue Deformation and Rupture
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
31
), pp.
2972
2980
.
13.
Ernst
,
G.
,
Vogler
,
M.
,
Hühne
,
C.
, and
Rolfes
,
R.
, 2010, “
Multiscale Progressive Failure Analysis of Textile Composites
,”
Compos. Sci. Technol.
,
70
(
1
), pp.
61
72
.
14.
Gilbert
,
T. W.
,
Sacks
,
M. S.
,
Grashow
,
J. S.
,
Savio
,
L. Y. W.
,
Badylak
,
S. F.
, and
Chancellor
,
M. B.
, 2006, “
Fiber Kinematics of Small Intestinal Submucosa Under Biaxial and Uniaxial Stretch
,”
J. Biomech. Eng.
,
128
, pp.
890
898
.
15.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 1997, “
A Method to Quantify the Fiber Kinematics of Planar Tissues Under Biaxial Stretch
,”
J. Biomech.
,
30
(
7
), pp.
753
756
.
16.
Lake
,
S. P.
,
Miller
,
K. S.
,
Elliott
,
D. M.
, and
Soslowsky
,
L. J.
, 2009, “
Effect of Fiber Distribution and Realignment on the Nonlinear and Inhomogeneous Mechanical Properties of Human Supraspinatus Tendon Under Longitudinal Tensile Loading
,”
J. Orthop. Res.
,
27
(
12
), pp.
1596
1602
.
17.
Padala
,
M.
,
Sacks
,
M. S.
,
Liou
,
S. W.
,
Balachandran
,
K.
,
He
,
Z.
, and
Yoganathan
,
A. P.
, 2010, “
Mechanics of the Mitral Valve Strut Chordae Insertion Region
,”
J. Biomech. Eng.
,
132
, p.
081004
.
18.
Moger
,
C.
,
Arkill
,
K.
,
Barrett
,
R.
,
Bleuet
,
P.
,
Ellis
,
R.
,
Green
,
E.
, and
Winlove
,
C.
, 2009, “
Cartilage Collagen Matrix Reorientation and Displacement in Response to Surface Loading
,”
J. Biomech. Eng.
,
131
, p.
031008
.
19.
Quinn
,
K. P.
, and
Winkelstein
,
B. A.
, 2008, “
Altered Collagen Fiber Kinematics Define the Onset of Localized Ligament Damage During Loading
,”
J. Appl. Phys.
,
105
(
6
), pp.
1881
1888
.
20.
Sander
,
E. A.
,
Stylianopoulos
,
T.
,
Tranquillo
,
R. T.
, and
Barocas
,
V. H.
, 2009, “
Image-Based Multiscale Modeling Predicts Tissue-Level and Network-Level Fiber Reorganization in Stretched Cell-Compacted Collagen Gels
,”
Proc. Natl. Acad. Sci. U.S.A.
,
106
(
42
), pp.
17675
17680
.
21.
Sander
,
E. A.
,
Stylianopoulos
,
T.
,
Tranquillo
,
R. T.
, and
Barocas
,
V. H.
, 2009, “
Image-Based Biomechanics of Collagen-Based Tissue Equivalents: Multiscale Models Compared to Fiber Alignment Predicted by Polarimetric Imaging
,”
IEEE Eng. Med. Biol. Mag.
,
28
(
3
), pp.
10
18
.
22.
Chandran
,
P. L.
, and
Barocas
,
V. H.
, 2007, “
Deterministic Material-Based Averaging Theory Model of Collagen Gel Micromechanics
,”
J. Biomech. Eng.
,
129
, pp.
137
147
.
23.
Stylianopoulos
,
T.
, and
Barocas
,
V. H.
, 2007, “
Volume-Averaging Theory for the Study of the Mechanics of Collagen Networks
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
31-32
), pp.
2981
2990
.
24.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 2000, “
Biaxial Mechanical Properties of the Native and Glutaraldehyde-Treated Aortic Valve Cusp: Part II—A Structural Constitutive Model
,”
J. Biomech. Eng.
,
122
, pp.
327
335
.
25.
Lai
,
V. K.
,
Lake
,
S. P.
,
Frey
,
C. R.
,
Tranquillo
,
R. T.
, and
Barocas
,
V. H.
, 2012, “
Mechanical Behavior of Collagen-Fibrin Co-Gels Reflects Transition From Series to Parallel Interactions With Increasing Collagen Content
,”
J. Biomech. Eng.
,
134
, p.
011004
.
26.
Sander
,
E. A.
,
Hadi
,
M. F.
, and
Barocas
,
V. H.
, 2011, “
Multiscale Mechanical Models for Understanding Microstructural Damage in Fibrous Tissues
,” Proceedings of the ASME 2011 Summer Bioengineering Conference,
Farmington
,
PA
, Paper No. SBC2011-53781.
27.
Raghupathy
,
R.
,
Witzenburg
,
C.
,
Lake
,
S. P.
,
Sander
,
E. A.
, and
Barocas
,
V. H.
, 2011, “
Identification of Regional Mechanical Anisotropy in Soft Tissue Analogs
,”
J. Biomech. Eng.
,
133
, p.
091011
.
28.
Pan
,
B.
,
Asundi
,
A.
,
Xie
,
H.
, and
Gao
,
J.
, 2009, “
Digital Image Correlation Using Iterative Least Squares and Pointwise Least Squares for Displacement Field and Strain Field Measurements
,”
Opt. Lasers Eng.
,
47
(
7-8
), pp.
865
874
.
29.
Tower
,
T. T.
,
Neidert
,
M. R.
, and
Tranquillo
,
R. T.
, 2002, “
Fiber Alignment Imaging During Mechanical Testing of Soft Tissues
,”
Ann. Biomed. Eng.
,
30
(
10
), pp.
1221
1233
.
30.
Sander
,
E.
, and
Barocas
,
V.
, 2009, “
Comparison of 2D Fiber Network Orientation Measurement Methods
,”
J. Biomed. Mater. Res. Part A
,
88
(
2
), pp.
322
331
.
31.
Sacks
,
M. S.
,
Schoen
,
F. J.
, and
Mayer
,
J. E.
, Jr
., 2009, “
Bioengineering Challenges for Heart Valve Tissue Engineering
,”
Annu. Rev. Biomed. Eng.
,
11
, pp.
289
313
.
32.
Robinson
,
P. S.
, and
Tranquillo
,
R. T.
, 2009, “
Planar Biaxial Behavior of Fibrin-Based Tissue-Engineered Heart Valve Leaflets
,”
Tissue Eng.
,
15
(
10
), pp.
2763
2772
.
33.
Pins
,
G. D.
,
Huang
,
E. K.
,
Christiansen
,
D. L.
, and
Silver
,
F. H.
, 1997, “
Effects of Static Axial Strain on the Tensile Properties and Failure Mechanisms of Self-Assembled Collagen Fibers
,”
J. Appl. Polym. Sci.
,
63
(
11
), pp.
1429
1440
.
34.
Shen
,
Z. L.
,
Dodge
,
M. R.
,
Kahn
,
H.
,
Ballarini
,
R.
, and
Eppell
,
S. J.
, 2008, “
Stress-Strain Experiments on Individual Collagen Fibrils
,”
Biophys. J.
,
95
(
8
), pp.
3956
3963
.
35.
Buehler
,
M. J.
, 2006, “
Nature Designs Tough Collagen: Explaining the Nanostructure of Collagen Fibrils
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
(
33
), pp.
12285
12290
.
36.
Stein
,
A. M.
,
Vader
,
D. A.
,
Weitz
,
D. A.
, and
Sander
,
L. M.
, 2008, “
The Micromechanics of Three Dimensional Collagen-I Gels
,”
Complexity
,
16
(
4
), pp.
22
28
.
37.
Bates
,
J. H. T.
, 2007, “
A Recruitment Model of Quasi-Linear Power-Law Stress Adaptation in Lung Tissue
,”
Ann. Biomed. Eng.
,
35
(
7
), pp.
1165
1174
.
38.
Maksym
,
G. N.
,
Fredberg
,
J. J.
, and
Bates
,
J. H. T.
, 1998, “
Force Heterogeneity in a Two-Dimensional Network Model of Lung Tissue Elasticity
,”
J. Appl. Phys.
,
85
(
4
), pp.
1223
1229
.
39.
Black
,
L. D.
,
Allen
,
P. G.
,
Morris
,
S. M.
,
Stone
,
P. J.
, and
Suki
,
B.
, 2008, “
Mechanical and Failure Properties of Extracellular Matrix Sheets as a Function of Structural Protein Composition
,”
Biophys. J.
,
94
(
5
), pp.
1916
1929
.
40.
Becker
,
A. M.
, and
Ziff
,
R. M.
, 2009, “
Percolation Thresholds on Two-Dimensional Voronoi Networks and Delaunay Triangulations
,”
Phys. Rev. E
,
80
(
4
), p.
041101
.
You do not currently have access to this content.