While a number of studies have quantified overall ribcage morphology (breadth, depth, kyphosis/lordosis) and rib cross-sectional geometry in humans, few studies have characterized the centroidal geometry of individual ribs. In this study, a novel model is introduced to describe the centroidal path of a rib (i.e., the sequence of centroids connecting adjacent cross-sections) in terms of several physically-meaningful and intuitive geometric parameters. Surface reconstructions of rib levels 2–10 from 16 adult male cadavers (aged 31–75 years) were first extracted from CT scans, and the centroidal path was calculated in 3D for each rib using a custom numerical method. The projection of the centroidal path onto the plane of best fit (i.e., the “in-plane” centroidal path) was then modeled using two geometric primitives (a circle and a semiellipse) connected to give C1 continuity. Two additional parameters were used to describe the deviation of the centroidal path from this plane; further, the radius of curvature was calculated at various points along the rib length. This model was fit to each of the 144 extracted ribs, and average trends in rib size and shape with rib level were reported. In general, upper ribs (levels 2–5) had centroidal paths which were closer to circular, while lower ribs (levels 6–10) tended to be more elliptical; further the centroidal curvature at the posterior extremity was less pronounced for lower ribs. Lower ribs also tended to exhibit larger deviations from the best-fit plane. The rib dimensions and trends with subject stature were found to be consistent with findings previously reported in the literature. This model addresses a critical need in the biomechanics literature for the accurate characterization of rib geometry, and can be extended to a larger population as a simple and accurate way to represent the centroidal shape of human ribs.

References

1.
Kent
,
R.
,
Woods
,
W.
, and
Bostrom
,
O.
,
2008
, “
Fatality Risk and the Presence of Rib Fractures
,”
Annual Proceedings, Association for the Advancement of Automotive Medicine
, pp.
73
84
.
2.
Mayberry
,
J. C.
, and
Trunkey
,
D. D.
,
1997
, “
The Fractured Rib in Chest Wall Trauma
,”
Chest Surg. Clin. N. Am.
,
7
(
2
), pp.
239
261
.
3.
Arajärvi
,
E.
, and
Santavirta
,
S.
,
1989
, “
Chest Injuries Sustained in Severe Traffic Accidents by Seatbelt Wearers
,”
J. Trauma
,
29
(
1
), pp.
37
41
.
4.
Lien
,
Y. C.
,
Chen
,
C. H.
, and
Lin
,
H. C.
,
2009
, “
Risk Factors for 24-Hour Mortality After Traumatic Rib Fractures Owing to Motor Vehicle Accidents: A Nationwide Population-Based Study
,”
Ann. Thorac. Surg.
,
88
(
4
), pp.
1124
1130
.10.1016/j.athoracsur.2009.06.002
5.
Bulger
,
E. M.
,
Arneson
,
M. A.
,
Mock
,
C. N.
, and
Jurkovich
,
G. J.
,
2000
, “
Rib Fractures in the Elderly
,”
J. Trauma Acute Care Surg.
,
48
(
6
), pp.
1040
1047
.10.1097/00005373-200006000-00007
6.
Kent
,
R.
, and
Patrie
,
J.
,
2005
, “
Chest Deflection Tolerance to Blunt Anterior Loading is Sensitive to Age but not Load Distribution
,”
Forensic Sci. Int.
,
149
(
2
), pp.
121
128
.10.1016/j.forsciint.2004.04.086
7.
Holcomb
,
J. B.
,
McMullin
,
N. R.
,
Kozar
,
R. A.
,
Lygas
,
M. H.
, and
Moore
,
F. A.
,
2003
, “
Morbidity From Rib Fractures Increases After Age 45
,”
J. Am. Coll. Surg.
,
196
(
4
), pp.
549
555
.10.1016/S1072-7515(02)01894-X
8.
Kent
,
R.
,
Lee
,
S. H.
,
Darvish
,
K.
,
Wang
,
S.
,
Poster
,
C. S.
,
Lange
,
A. W.
,
Brede
,
C.
,
Lange
,
D.
, and
Matsuoka
,
F.
,
2005
, “
Structural and Material Changes in the Aging Thorax and Their Role in Crash Protection for Older Occupants
,”
Stapp Car Crash Journal
,
49
, pp.
231
249
.
9.
Charpail
,
E.
,
Trosseille
,
X.
,
Petit
,
P.
,
Laporte
,
S.
,
Lavaste
,
F.
, and
Vallancien
,
G.
,
2005
, “
Characterization of PMHS Ribs: A New Test Methodology
,”
Stapp Car Crash Journal
,
49
, pp.
183
198
.
10.
Gray
,
H.
,
1918
,
Anatomy of the Human Body
,
Lea & Febiger
,
Philadelphia, PA
.
11.
Kemper
,
A. R.
,
McNally
,
C.
,
Pullins
,
C. A.
,
Freeman
,
L. J.
,
Duma
,
S. M.
, and
Rouhana
,
S. M.
,
2007
, “
The Biomechanics of Human Ribs: Material and Structural Properties From Dynamic Tension and Bending Tests
,”
Stapp Car Crash Journal
,
51
, pp.
235
273
.
12.
Kemper
,
A. R.
,
McNally
,
C.
,
Kennedy
,
E. A.
,
Manoogian
,
S. J.
,
Rath
,
A. L.
,
Ng
,
T. P.
,
Stitzel
,
J. D.
,
Smith
,
E. P.
,
Duma
,
S. M.
, and
Matsuoka
,
F.
,
2005
, “
Material Properties of Human Rib Cortical Bone From Dynamic Tension Coupon Testing
,”
Stapp Car Crash Journal
,
49
, pp.
199
230
.
13.
Cormier
,
J. M.
,
Stitzel
,
J. D.
,
Duma
,
S. M.
, and
Matsuoka
,
F.
,
2005
, “
Regional Variation in the Structural Response and Geometrical Properties of Human Ribs
,”
Annual Proceedings, Association for the Advancement of Automotive Medicine
, pp.
153
170
.
14.
Yoganandan
,
N.
, and
Pintar
,
F.
,
1998
, “
Biomechanics of Human Thoracic Ribs
,”
ASME J. Biomech. Eng.
,
120
(
1
), pp.
100
104
.10.1115/1.2834288
15.
Stitzel
,
J. D.
,
Cormier
,
J. M.
,
Barretta
,
J. T.
,
Kennedy
,
E. A.
,
Smith
,
E. P.
Rath
,
A. L.
,
Duma
,
S. M.
, and
Matsuoka
,
F.
,
2003
, “
Defining Regional Variation in the Material Properties of Human Rib Cortical Bone and its Effect on Fracture Prediction
,”
Stapp Car Crash Journal
,
47
, pp.
243
265
.
16.
Kindig
,
M.
,
Lau
,
A. G.
, and
Kent
,
R. W.
,
2011
, “
Biomechanical Response of Ribs Under Quasistatic Frontal Loading
,”
Traffic Injury Prevention
,
12
(
4
), pp.
377
387
.10.1080/15389588.2011.583960
17.
Haug
,
E.
,
Choi
,
H. Y.
,
Robin
,
S.
, and
Beaugonin
,
M.
,
2004
, “
Human Models for Crash and Impact Simulation
,”
Handbook of Numerical Analysis
,
Amsterdam, Netherlands
, Vol.
XII
, pp.
231
452
.
18.
Iwamoto
,
M.
,
Kisanuki
,
Y.
,
Watanabe
,
I.
,
Furusu
,
K.
,
Miki
,
K.
, and
Hasegawa
,
J.
,
2002
, “
Development of a Finite Element Model of the Total Human Model for Safety (THUMS) and Application to Injury Reconstruction
,”
Proceedings of the International IRCOBI Conference
.
19.
Kimpara
,
H.
,
Lee
,
J. B.
,
Yang
,
K. H.
,
King
,
A. I.
,
Iwamoto
,
M.
,
Watanabe
,
I.
, and
Miki
,
K.
,
2005
, “
Development of a Three-Dimensional Finite Element Chest Model for the 5th Percentile Female
,”
Stapp Car Crash Journal
,
49
, pp.
251
269
.
20.
Nussbaum
,
M.
, and
Chaffin
,
D.
,
1996
, “
Development and Evaluation of a Scalable and Deformable Geometric Model of the Human Torso
,”
Clin. Biomech.
,
11
(
1
), pp.
25
34
.10.1016/0268-0033(95)00031-3
21.
Robin
,
S.
,
2001
, “
HUMOS: Human Model for Safety–A Joint Effort Towards the Development of Refined Human Like Car Occupant Models
,”
Proc. 17th Enhanced Safety of Vehicles Conference
.
22.
Li
,
Z.
,
Kindig
,
M.
,
Subit
,
D.
, and
Kent
,
R.
,
2010
, “
Development of Finite Element Model of 50th Percentile Male Using Multiblock Hex Meshing Approach
,”
Proc. 6th Annual World Congress on Biomechanics
,
Singapore
.
23.
Carrier
,
J.
,
Aubin
,
C.
,
Trochu
,
F.
, and
Labelle
,
H.
,
2005
, “
Optimization of Rib Surgery Parameters for the Correction of Scoliotic Deformities Using Approximation Models
,”
ASME J. Biomech. Eng.
,
127
(
4
), pp.
680
691
.10.1115/1.1933879
24.
Grivas
,
T.
,
Burwell
,
R.
,
Purdue
,
M.
,
Webb
,
J.
, and
Moulton
,
A.
,
1991
, “
A Segmental Analysis of Thoracic Shape in Chest Radiographs of Children. Changes Related to Spinal Level, Age, Sex, Side and Significance for Lung Growth and Scoliosis
,”
J. Anat.
,
178
, pp.
21
38
.
25.
Bellemare
,
J. F.
,
Cordeau
,
M. P.
,
Leblanc
,
P.
, and
Bellemare
,
F.
,
2001
, “
Thoracic Dimensions at Maximum Lung Inflation in Normal Subjects and in Patients With Obstructive and Restrictive Lung Diseases
,”
Chest
,
119
(
2
), pp.
376
386
.10.1378/chest.119.2.376
26.
Cassart
,
M.
,
Gevenois
,
P. A.
, and
Estenne
,
M.
,
1996
, “
Rib Cage Dimensions in Hyperinflated Patients With Severe Chronic Obstructive Pulmonary Disease
,”
Am. J. Respir. Criti. Care Med.
,
154
(
3
), pp.
800
805
.10.1164/ajrccm.154.3.8810622
27.
Labelle
,
H.
,
Dansereau
,
J.
,
Bellefleur
,
C.
, and
Poitras
,
B.
,
1996
, “
Three-Dimensional Effect of the Boston Brace on the Thoracic Spine and Rib Cage
,”
Spine
,
21
(
1
), pp.
59
64
.10.1097/00007632-199601010-00013
28.
Wilson
,
T.
,
Rehder
,
K.
,
Krayer
,
S.
,
Hoffman
,
E.
,
Whitney
,
C.
, and
Rodarte
,
J.
,
1987
, “
Geometry and Respiratory Displacement of Human Ribs
,”
J. Appl. Physiol.
,
62
(
5
), pp.
1872
1877
.
29.
Margulies
,
S.
,
Rodarte
,
J.
, and
Hoffman
,
E.
,
1989
, “
Geometry and Kinematics of Dog Ribs
,”
J. Appl. Physiol.
,
67
(
2
), pp.
707
712
.
30.
Berthet
,
F.
,
Vezin
,
P.
,
Chèze
,
L.
, and
Verriest
,
J. P.
,
2005
, “
Assessment and Analysis of the Human Rib Lateral Slopes
,”
Comput. Methods Biomech. Biomed. Eng.
,
8
(
S1
), pp.
35
36
.10.1080/10255840512331388137
31.
Jordanoglou
,
J.
,
1970
, “
Vector Analysis of Rib Movement
,”
Respir. Physiol.
,
10
(
1
), pp.
109
120
.10.1016/0034-5687(70)90031-9
32.
Gayzik
,
F. S.
,
Yu
,
M. M.
,
Danelson
,
K. A.
,
Slice
,
D. E.
, and
Stitzel
,
J. D.
,
2008
, “
Quantification of Age-Related Shape Change of the Human Rib Cage Through Geometric Morphometrics
,”
J. Biomech.
,
41
(
7
), pp.
1545
1554
.10.1016/j.jbiomech.2008.02.006
33.
Sedlin
,
E. D.
,
Frost
,
H. M.
, and
Villanueva
,
A. R.
,
1963
, “
Variations in Cross-Section Area of Rib Cortex With Age
,”
J. Gerontol.
,
18
(
1
), pp.
9
13
.10.1093/geronj/18.1.9
34.
Takahashi
,
H.
, and
Frost
,
H. M.
,
1966
, “
Age and Sex Related Changes in the Amount of Cortex of Normal Human Ribs
,”
Acta Orthop.
,
37
(
2
), pp.
122
130
.10.3109/17453676608993272
35.
Stein
,
I.
, and
Granik
,
G.
,
1976
, “
Rib Structure and Bending Strength: An Autopsy Study
,”
Calcif. Tissue Int.
,
20
(
1
), pp.
61
73
.10.1007/BF02546398
36.
Mohr
,
M.
,
Abrams
,
E.
,
Engel
,
C.
,
Long
,
W. B.
, and
Bottlang
,
M.
,
2007
, “
Geometry of Human Ribs Pertinent to Orthopedic Chest-Wall Reconstruction
,”
J. Biomech.
,
40
(
6
), pp.
1310
1317
.10.1016/j.jbiomech.2006.05.017
37.
Fanton
,
L.
,
Gustin
,
M. P.
,
Maujean
,
G.
,
Bernard
,
O.
,
Telmon
,
N.
, and
Malicier
,
D.
,
2012
, “
Geometric and Harmonic Study of the Aging of the Fourth Rib
,”
Int. J. Leg. Med.
,
126
(
5
), pp.
685
691
.10.1007/s00414-012-0714-6
38.
Choi
,
H.
, and
Lee
,
I.
,
2009
, “
Thorax FE Model for Older Population
,”
Proceedings of the Japan Society of Mechanical Engineers
.
39.
Dansereau
,
J.
, and
Stokes
,
I.A.F.
,
1988
, “
Measurements of the Three-Dimensional Shape of the Rib Cage
,”
J. Biomech.
,
21
(
11
), pp.
893
901
.10.1016/0021-9290(88)90127-3
40.
Bellemare
,
F.
,
Fuamba
,
T.
, and
Bourgeault
,
A.
,
2006
, “
Sexual Dimorphism of Human Ribs
,”
Respir. Physiol. Neurobiol.
,
150
(
2
), pp.
233
239
.10.1016/j.resp.2005.04.002
41.
Mertz
,
H.
,
Irwin
,
A.
,
Melvin
,
J.
,
Stalnaker
,
R.
, and
Beebe
,
M.
,
1989
, “
Size, Weight and Biomechanical Impact Response Requirements For Adult Size Small Female and Large Male Dummies
,”
Society of Automotive Engineers
,
Warrendale, PA
.
42.
Kent
,
R. W.
,
Crandall
,
J. R.
,
Bolton
,
J.
,
Prasad
,
P.
,
Nusholtz
,
G.
, and
Mertz
,
H.
,
2001
, “
The Influence of Superficial Soft Tissues and Restraint Condition on Thoracic Skeletal Injury Prediction
,”
Stapp Car Crash Journal
,
45
, pp.
183
204
.
43.
Schultz
,
A. B.
,
Benson
,
D. R.
, and
Hirsch
,
C.
,
1974
, “
Force-Deformation Properties of Human Ribs
,”
J. Biomech.
,
7
(
3
), pp.
303
309
.10.1016/0021-9290(74)90023-2
44.
Ali
,
T.
,
2006
, “
The Aging Human Thorax: Structural and Material Characterization
,” M.S. thesis, University of Virginia, Charlottesville, VA.
45.
Roberts
,
S.
, and
Chen
,
P.
,
1972
, “
Global Geometric Characteristics of Typical Human Ribs
,”
J. Biomech.
,
5
(
2
), pp.
191
201
.10.1016/0021-9290(72)90055-3
46.
Roberts
,
S. B.
,
1977
, “
A Simple Quantitative Anatomical Model for In-Vivo Human Ribs
,”
J. Bioeng.
,
1
, pp.
443
454
.
47.
Edelsbrunner
,
H.
,
Kirkpatrick
,
D.
, and
Seidel
,
R.
,
1983
, “
On the Shape of a Set of Points in the Plane
,”
IEEE Trans. Inf. Theory
,
29
(
4
), pp.
551
559
.10.1109/TIT.1983.1056714
48.
Vezin
,
P.
, and
Berthet
,
F.
,
2009
, “
Structural Characterization of Human Rib Cage Behavior Under Dynamic Loading
,”
Stapp Car Crash Journal
,
53
, pp.
93
125
.
49.
Oskvig
,
R. M.
,
1999
, “
Special Problems in the Elderly
,”
Chest
,
115
(
2
), pp.
158S
164S
.10.1378/chest.115.suppl_2.158S
50.
Bellemare
,
F.
,
Jeanneret
,
A.
, and
Couture
,
J.
,
2003
, “
Sex Differences in Thoracic Dimensions and Configuration
,”
Am. J. Respir. Crit. Care Med.
,
168
(
3
), pp.
305
312
.10.1164/rccm.200208-876OC
51.
Comeau
,
A. R.
,
2010
, “
Age-Related Changes in Geometric Characteristics of the Pediatric Thoracic Cage and Comparison of Thorax Shape With a Pediatric CPR Manikin
,” M.S. thesis, Drexel University, Philadelphia, PA.
52.
Doershuk
,
C.
,
Fisher
,
B.
, and
Matthews
,
L.
,
1975
, “
Pulmonary Physiology of the Young Child
,”
Pulmonary Physiology of the Fetus, Newborn and Child
,
E. M.
Scarpelli
and
P.
Auld
, eds.,
Lea & Febiger
,
Philadelphia, PA
, pp.
166
182
.
53.
Openshaw
,
P.
,
Edwards
,
S.
, and
Helms
,
P.
,
1984
, “
Changes in Rib Cage Geometry During Childhood
,”
Thorax
,
39
(
8
), pp.
624
627
.10.1136/thx.39.8.624
54.
Grivas
,
T.
,
Samelis
,
P.
,
Chadziargiropoulos
,
T.
, and
Polyzois
,
B.
,
2002
, “
Study of the Rib Cage Deformity in Children With 10 Degrees-20 Degrees of Cobb Angle Late Onset Idiopathic Scoliosis, Using Rib-Vertebra Angles–Aetiologic Implications
,”
Stud. Health Technol. Inform.
,
91
, pp.
20
24
.
55.
Manson
,
D.
,
Diamond
,
L.
,
Oudjhane
,
K.
,
Hussain
,
F. B.
,
Roifman
,
C.
, and
Grunebaum
,
E.
,
2012
, “
Characteristic Scapular and Rib Changes on Chest Radiographs of Children With ADA-Deficiency SCIDS in the First Year of Life
,”
Pediatr. Radiol.
,
43
(
5
), pp.
589
592
.10.1007/s00247-012-2564-2
56.
Kotwicki
,
T.
,
Zielinska-Kaszubowska
,
I.
,
Szulc
,
A.
, and
Samborski
,
W.
,
2010
, “
Simple Technique to Evaluate Thorax Asymmetry in Scoliosis: Clinical Usefulness to Assess Deformity and Mobility
,”
Stud. Health Technol. Inform.
,
158
, pp.
24
28
.
57.
Takahashi
,
S.
,
Suzuki
,
N.
,
Asazuma
,
T.
,
Kono
,
K.
,
Ono
,
T.
, and
Toyama
,
Y.
,
2007
, “
Factors of Thoracic Cage Deformity That Affect Pulmonary Function in Adolescent Idiopathic Thoracic Scoliosis
,”
Spine
,
32
(
1
), pp.
106
112
.10.1097/01.brs.0000251005.31255.25
58.
Nie
,
W.-Z.
,
Ye
,
M.
,
Liu
,
Z.-D.
, and
Wang
,
C.-T.
,
2009
, “
The Patient-Specific Brace Design and Biomechanical Analysis of Adolescent Idiopathic Scoliosis
,”
ASME J. Biomech. Eng.
,
131
(
4
), p.
041007
.10.1115/1.3049843
59.
Kindig
,
M. W.
,
Lau
,
A. G.
,
Forman
,
J. L.
, and
Kent
,
R. W.
,
2010
, “
Structural Response of Cadaveric Ribcages Under a Localized Loading: Stiffness and Kinematic Trends
,”
Stapp Car Crash Journal
,
54
, pp.
337
380
.
60.
Moore
,
R.
,
1991
, “
Fracture of the First Rib: An Uncommon Throwing Injury
,”
Injury
,
22
(
2
), pp.
149
150
.10.1016/0020-1383(91)90079-T
61.
Prisk
,
V. R.
, and
Hamilton
,
W. G.
,
2008
, “
Stress Fracture of the First Rib in Weight-Trained Dancers
,”
Am. J. Sports Med.
,
36
(
12
), pp.
2444
2447
.10.1177/0363546508326710
62.
O'Neal
,
M.
,
Ganey
,
T. M.
, and
Ogden
,
J. A.
,
2009
, “
First Rib Stress Fracture and Pseudarthrosis in the Adolescent Athlete: The Role of Costosternal Anatomy
,”
Clin. J. Sport Med.
,
19
(
1
), pp.
65
67
.10.1097/JSM.0b013e3181919495
63.
Ozel
,
S. K.
, and
Kazez
,
A.
,
2005
, “
Horner Syndrome Due to First Rib Fracture After Major Thoracic Trauma
,”
J. Ped. Surg.
,
40
(
10
), pp.
E17
E19
.10.1016/j.jpedsurg.2005.06.020
64.
Richardson
,
J. D.
,
McElvein
,
R. B.
, and
Trinkle
,
J. K.
,
1975
, “
First Rib Fracture: A Hallmark of Severe Trauma
,”
Ann. Surg.
,
181
(
3
), pp.
251
254
.10.1097/00000658-197503000-00001
65.
Gumbs
,
R. V.
,
Peniston
,
R. L.
,
Nabhani
,
H. A.
, and
Henry
,
L. J.
,
1991
, “
Rib Fractures Complicating Median Sternotomy
,”
Ann. Thorac. Surg.
,
51
(
6
), pp.
952
955
.10.1016/0003-4975(91)91012-K
You do not currently have access to this content.