Delineating the normal postnatal development of the pulmonary artery (PA) and ascending aorta (AA) can inform our understanding of congenital abnormalities, as well as pulmonary and systolic hypertension. We thus conducted the following study to delineate the PA and AA postnatal growth deformation characteristics in an ovine model. MR images were obtained from endoluminal surfaces of 11 animals whose ages ranged from 1.5 months/15.3 kg mass (very young) to 12 months/56.6 kg mass (adult). A bicubic Hermite finite element surface representation was developed for the each artery from each animal. Under the assumption that the relative locations of surface points were retained during growth, the individual animal surface fits were subsequently used to develop a method to estimate the time-evolving local effective surface growth (relative to the youngest measured animal) in the end-diastolic state. Results indicated that the spatial and temporal surface growth deformation patterns of both arteries, especially in the circumferential direction, were heterogeneous, leading to an increase in taper and increase in cross-sectional ellipticity of the PA. The longitudinal PA growth stretch of a large segment on the posterior wall reached 2.57 ± 0.078 (mean ± SD) at the adult stage. In contrast, the longitudinal growth of the AA was smaller and more uniform (1.80 ± 0.047). Interestingly, a region of the medial wall of both arteries where both arteries are in contact showed smaller circumferential growth stretches—specifically 1.12 ± 0.012 in the PA and 1.43 ± 0.071 in the AA at the adult stage. Overall, our results indicated that contact between the PA and AA resulted in increasing spatial heterogeneity in postnatal growth, with the PA demonstrating the greatest changes. Parametric studies using simplified geometric models of curved arteries during growth suggest that heterogeneous effective surface growth deformations must occur to account for the changes in measured arterial shapes during the postnatal growth period. This result suggests that these first results are a reasonable first-approximation to the actual effective growth patterns. Moreover, this study clearly underscores how functional growth of the PA and AA during postnatal maturation involves complex, local adaptations in tissue formation. Moreover, the present results will help to lay the basis for functional replacement by defining critical geometric metrics.

References

1.
Adatia
,
I.
,
Kothari
,
S. S.
, and
Feinstein
,
J. A.
,
2010
, “
Pulmonary Hypertension Associated With Congenital Heart Disease: Pulmonary Vascular Disease: The Global Perspective
,”
Chest
,
137
(
Suppl 6
), pp.
52S
61S
.10.1378/chest.09-2861
2.
Greenwald
,
S. E.
,
Johnson
,
R. J.
, and
Haworth
,
S. G.
,
1984
, “
Pulmonary Vascular Input Impedance in the Newborn and Infant Pig
,”
Cardiovasc. Res.
,
18
, pp.
44
50
.10.1093/cvr/18.1.44
3.
Kogon
,
B. E.
,
Patel
,
M.
,
Pernetz
,
M.
,
Mcconnell
,
M.
, and
Book
,
W.
,
2009
, “
Late Pulmonary Valve Replacement in Congenital Heart Disease Patients Without Original Congenital Pulmonary Valve Pathology
,”
Pediatr. Cardiol.
,
31
(
1
), pp.
74
79
.10.1007/s00246-009-9574-3
4.
Ono
,
M.
,
Goerler
,
H.
,
Kallenbach
,
K.
,
Boethig
,
D.
,
Westhoff-Bleck
,
M.
, and
Breymann
,
T.
,
2007
, “
Aortic Valve-Sparing Reimplantation for Dilatation of the Ascending Aorta and Aortic Regurgitation Late After Repair of Congenital Heart Disease
,”
J. Thorac. Cardiovasc. Surg.
,
133
(
4
), pp.
876
879
.10.1016/j.jtcvs.2006.10.055
5.
Rosenberg
,
H. G.
,
Williams
,
W. G.
,
Trusler
,
G. A.
,
Higa
,
T.
, and
Rabinovitch
,
M.
,
1987
, “
Structural Composition of Central Pulmonary Arteries. Growth Potential After Surgical Shunts
,”
J. Thorac. Cardiovasc. Surg.
,
94
(
4
), pp.
498
503
.
6.
Mayer
,
J. E.
, Jr
,
1995
, “
Uses of Homograft Conduits for Right Ventricle to Pulmonary Artery Connections in the Neonatal Period
,”
Semin. Thorac. Cardiovasc. Surg.
,
7
(
3
), pp.
130
132
.
7.
Cho
,
S. W.
,
Kim
,
I. K.
,
Kang
,
J. M.
,
Song
,
K. W.
,
Kim
,
H. S.
,
Park
,
C. H.
,
Yoo
,
K. J.
, and
Kim
,
B. S.
,
2009
, “
Evidence for in Vivo Growth Potential and Vascular Remodeling of Tissue-Engineered Artery
,”
Tissue Eng. Part A
,
15
(
4
), pp.
901
912
.10.1089/ten.tea.2008.0172
8.
Hoerstrup
,
S. P.
,
Cummings
,
I.
,
Lachat
,
M.
,
Schoen
,
F. J.
,
Jenni
,
R.
,
Leschka
,
S.
,
Neuenschwander
,
S.
,
Schmidt
,
D.
,
Mol
,
A.
,
Gunter
,
C.
,
Gossi
,
M.
,
Genoni
,
M.
, and
Zund
,
G.
,
2006
, “
Functional Growth in Tissue-Engineered Living, Vascular Grafts: Follow-up at 100 Weeks in a Large Animal Model
,”
Circulation
,
114
(
1 Suppl
), pp.
1159
1166
.10.1161/CIRCULATIONAHA.105.001172
9.
Sacks
,
M. S.
, and
Yoganathan
,
A. P.
,
2007
, “
Heart Valve Function: A Biomechanical Perspective
,”
Philos. Trans. R. Soc. Lond. Ser. B
,
362
(
1484
), pp.
1369
1391
.10.1098/rstb.2007.2122
10.
Mavroudis
,
C.
, and
Backer
,
C. L.
,
2003
, “
Physiologic Versus Anatomic Repair of Congenitally Corrected Transposition of the Great Arteries
,”
Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu.
,
6
, pp.
16
26
.
11.
O'rourke
,
M. F.
, and
Nichols
,
W. W.
,
2005
, “
Aortic Diameter, Aortic Stiffness, and Wave Reflection Increase With Age and Isolated Systolic Hypertension
,”
Hypertension
,
45
(
4
), pp.
652
658
.10.1161/01.HYP.0000153793.84859.b8
12.
Ng
,
C. S.
,
Wells
,
A. U.
, and
Padley
,
S. P.
,
1999
, “
A Ct Sign of Chronic Pulmonary Arterial Hypertension: The Ratio of Main Pulmonary Artery to Aortic Diameter
,”
J. Thorac. Imaging
,
14
(
4
), pp.
270
278
.10.1097/00005382-199910000-00007
13.
Allen
,
H. D.
,
Adams
,
F. H.
, and
Moss
,
A. J.
,
2001
,
Moss and Adams' Heart Disease in Infants, Children, and Adolescents: Including the Fetus and Young Adult
,
Lippincott Williams & Wilkins
,
Philadelphia, PA
.
14.
Berne
,
R. M.
, and
Levy
,
M. N.
,
1986
,
Cardiovascular Physiology
,
Mosby
,
Maryland Heights, MO
.
15.
Kaldararova
,
M.
,
Balazova
,
E.
,
Tittel
,
P.
,
Stankovicova
,
I.
,
Brucknerova
,
I.
, and
Masura
,
J.
,
2007
, “
Echocardiographic Measurements of the Aorta in Normal Children and Young Adults
,”
Bratisl Lek Listy
,
108
(
10–11
), pp.
437
441
.
16.
Poutanen
,
T.
,
Tikanoja
,
T.
,
Sairanen
,
H.
, and
Jokinen
,
E.
,
2003
, “
Normal Aortic Dimensions and Flow in 168 Children and Young Adults
,”
Clin. Physiol. Funct. Imaging
,
23
(
4
), pp.
224
229
.10.1046/j.1475-097X.2003.00501.x
17.
Gottlieb
,
D.
,
Fata
,
B.
,
Powell
,
A. J.
,
Cois
,
C. A.
,
Annese
,
D.
,
Tandon
,
K.
,
Stetten
,
G. D.
,
Mayer
,
J. E.
, and
Sacks
,
M. S.
,
2013
, “
Pulmonary Artery Dimensional Changes in a Growing Ovine Model: Comparisons With the Ascending Aorta
,”
J. Heart Valve Dis.
, (in press).
18.
Rodriguez
,
E. K.
,
Hoger
,
A.
, and
Mcculloch
,
A. D.
,
1994
, “
Stress-Dependent Finite Growth in Soft Elastic Tissues
,”
J. Biomech.
,
27
(
4
), pp.
455
467
.10.1016/0021-9290(94)90021-3
19.
Shinoka
,
T.
,
Shum-Tim
,
D.
,
Ma
,
P. X.
,
Tanel
,
R. E.
,
Isogai
,
N.
,
Langer
,
R.
,
Vacanti
,
J. P.
, and
Mayer
,
J. E.
, Jr
.,
1998
, “
Creation of Viable Pulmonary Artery Autografts Through Tissue Engineering
,”
J. Thorac. Cardiovasc. Surg.
,
115
(
3
), pp.
536
54
510.1016/S0022-5223(98)70315-0
20.
Cois
,
A.
,
Galeotti
,
J.
,
Tamburo
,
R.
,
Sacks
,
M.
, and
Stetten
,
G.
,
2010
, “
Shells and Spheres: An N-Dimensional Framework for Medial-Based Image Segmentation
,”
Int. J. Biomed. Imaging
,
2010
, p.
98087
210.1155/2010/980872
21.
Azar
,
A.
,
2005
, “
An Interactive Intensity- and Feature-Based Non-Rigid Registration Framework for 3D Medical Images
,” Ph.D. thesis, Université de Nice Sophia-Antipolis, Sophia-Antipolis, France.
22.
Jenkinson
,
M.
, and
Smith
,
S.
,
2001
, “
A Global Optimisation Method for Robust Affine Registration of Brain Images
,”
Med. Image Anal.
,
5
(
2
), pp.
143
156
.10.1016/S1361-8415(01)00036-6
23.
Nielsen
,
P. M.
,
Le Grice
,
I. J.
,
Smaill
,
B. H.
, and
Hunter
,
P. J.
,
1991
, “
Mathematical Model of Geometry and Fibrous Structure of the Heart
,”
Am. J. Physiol.
,
260
, pp.
H1365
H1378
.
24.
Smith
,
D. B.
,
Sacks
,
M. S.
,
Vorp
,
D. A.
, and
Thornton
,
M.
,
2000
, “
Surface Geometric Analysis of Anatomic Structures Using Biquintic Finite Element Interpolation
,”
Ann. Biomed. Eng.
,
28
(
6
), pp.
598
611
.10.1114/1.1306342
25.
Struik
,
D. J.
,
1961
,
Lectures on Classical Differential Geometry
,
Dover
,
New York
.
26.
Flugge
,
W.
,
1972
,
Tensor Analysis and Continuum Mechanics
,
Springer-Verlag
,
New York
.
27.
Huang
,
Y.
,
Guo
,
X.
, and
Kassab
,
G. S.
,
2006
, “
Axial Nonuniformity of Geometric and Mechanical Properties of Mouse Aorta is Increased During Postnatal Growth
,”
Am. J. Physiol. Heart Circ. Physiol.
,
290
(
2
), pp.
H657
H664
.10.1152/ajpheart.00803.2005
28.
Filas
,
B. A.
,
Knutsen
,
A. K.
,
Bayly
,
P. V.
, and
Taber
,
L. A.
,
2008
, “
A New Method for Measuring Deformation of Folding Surfaces During Morphogenesis
,”
ASME J. Biomech. Eng.
,
130
(
6
), p.
061010
.10.1115/1.2979866
29.
Renton
,
J. D.
,
1987
,
Applied Elasticity: Matrix and Tensor Analysis of Elastic Continua
,
Ellis Horwood Limited
,
Chichester, UK
.
30.
Berry
,
C. L.
,
1973
, “
Growth, Development, and Healing of Large Arteries
,”
Ann. R. Coll. Surg. Engl.
,
53
(
4
), pp.
246
257
.
31.
Kutty
,
S.
,
Kaul
,
S.
,
Danford
,
C. J.
, and
Danford
,
D. A.
,
2010
, “
Main Pulmonary Artery Dilation in Association With Congenital Bicuspid Aortic Valve in the Absence of Pulmonary Valve Abnormality
,”
Heart
,
96
(
21
), pp.
1756
1761
.10.1136/hrt.2010.199109
32.
De Sa
,
M.
,
Moshkovitz
,
Y.
,
Butany
,
J.
, and
David
,
T. E.
,
1999
, “
Histologic Abnormalities of the Ascending Aorta and Pulmonary Trunk in Patients With Bicuspid Aortic Valve Disease: Clinical Relevance to the Ross Procedure
,”
J. Thorac. Cardiovasc. Surg.
,
118
(
4
), pp.
588
594
.10.1016/S0022-5223(99)70002-4
33.
Choi
,
G.
,
Cheng
,
C. P.
,
Wilson
,
N. M.
, and
Taylor
,
C. A.
,
2008
, “
Methods for Quantifying Three-Dimensional Deformation of Arteries Due to Pulsatile and Nonpulsatile Forces: Implications for the Design of Stents and Stent Grafts
,”
Ann. Biomed. Eng.
,
37
(
1
), pp.
14
33
.10.1007/s10439-008-9590-0
34.
Thubrikar
,
M. J.
,
2007
,
Vascular Mechanics and Pathology
,
Springer
,
New York
.
35.
Greenwald
,
S. E.
,
Berry
,
C. L.
, and
Haworth
,
S. G.
,
1982
, “
Changes in Distensibility of Intrapulmonary Arteries in the Normal Newborn and Growing Pig
,”
Cardiovasc. Res.
,
16
, pp.
716
725
.10.1093/cvr/16.12.716
36.
Rachev
,
A.
,
Greenwald
,
S. E.
,
Kane
,
T. P.
,
Moore
,
J. E.
, Jr.
, and
Meister
,
J. J.
,
1995
, “
Analysis of the Strain and Stress Distribution in the Wall of the Developing and Mature Rat Aorta
,”
Biorheology
,
32
(
4
), pp.
473
485
.10.1016/0006-355X(95)00024-4
37.
Pagani
,
M.
,
Mirsky
,
I.
,
Baig
,
H.
,
Manders
,
W. T.
,
Kerkhof
,
P.
, and
Vatner
,
S. F.
,
1979
, “
Effects of Age on Aortic Pressure-Diameter and Elastic Stiffness-Stress Relationships in Unanesthetized Sheep.
,”
Circ. Res.
,
44
, pp.
420
429
.10.1161/01.RES.44.3.420
38.
O'Rourke
,
M. F.
,
1999
, “
Mechanical Principles. Arterial Stiffness and Wave Reflection
,”
Pathol. Biol. (Paris)
,
47
(
6
), pp.
623
633
.
39.
Taylor
,
M. G.
,
1965
, “
Wave-Travel in a Non-Uniform Transmission Line, in Relation to Pulses in Arteries
,”
Phys. Med. Biol.
,
10
(
4
), pp.
539
550
.10.1088/0031-9155/10/4/308
40.
Wells
,
S. M.
,
Langille
,
B. L.
, and
Adamson
,
S. L.
,
1998
, “
In Vivo and in Vitro Mechanical Properties of the Sheep Thoracic Aorta in the Perinatal Period and Adulthood
,”
Am. J. Physiol.
,
274
(
43
), pp.
H1749
H1760
.
41.
Melbin
,
J.
,
Gopalakrishnan
,
R.
, and
Noordergraaf
,
A.
,
1975
, “
Three Dimensional Laminar Flow in Distorting, Axisymmetric, Axially Varying Vessels
,”
Bull. Math. Biol.
,
37
(
5
), pp.
489
504
.
42.
Stanger
,
B. Z.
,
2008
, “
Organ Size Determination and the Limits of Regulation
,”
Cell Cycle
,
7
(
3
), pp.
318
324
.10.4161/cc.7.3.5348
43.
Lui
,
J. C.
, and
Baron
,
J.
,
2011
, “
Mechanisms Limiting Body Growth in Mammals
,”
Endocr. Rev.
,
32
(
3
), pp.
422
440
.10.1210/er.2011-0001
44.
Finkielstain
,
G. P.
,
Forcinito
,
P.
,
Lui
,
J. C.
,
Barnes
,
K. M.
,
Marino
,
R.
,
Makaroun
,
S.
,
Nguyen
,
V.
,
Lazarus
,
J. E.
,
Nilsson
,
O.
, and
Baron
,
J.
,
2009
, “
An Extensive Genetic Program Occurring During Postnatal Growth in Multiple Tissues
,”
Endocrinology
,
150
(
4
), pp.
1791
1800
.10.1210/en.2008-0868
45.
Haga
,
J. H.
,
Li
,
Y. S.
, and
Chien
,
S.
,
2007
, “
Molecular Basis of the Effects of Mechanical Stretch on Vascular Smooth Muscle Cells
,”
J. Biomech.
,
40
(
5
), pp.
947
960
.10.1016/j.jbiomech.2006.04.011
46.
Kolpakov
,
V.
,
Rekhter
,
M. D.
,
Gordon
,
D.
,
Wang
,
W. H.
, and
Kulik
,
T. J.
,
1995
, “
Effect of Mechanical Forces on Growth and Matrix Protein Synthesis in the in Vitro Pulmonary Artery. Analysis of the Role of Individual Cell Types
,”
Circ. Res.
,
77
(
4
), pp.
823
831
.10.1161/01.RES.77.4.823
47.
Garcia-Cardena
,
G.
,
Comander
,
J.
,
Anderson
,
K. R.
,
Blackman
,
B. R.
, and
Gimbrone
,
M. A.
,
2001
, “
Biomechanical Activation of Vascular Endothelium as a Determinant of Its Functional Phenotype
,”
Proceedings of the National Academy of Sciences
,
98
(
8
), pp.
4478
4485
.10.1073/pnas.071052598
48.
Bowers
,
S. L.
,
Banerjee
,
I.
, and
Baudino
,
T. A.
,
2010
, “
The Extracellular Matrix: At the Center of It All
,”
J. Mol. Cell. Cardiol.
,
48
(
3
), pp.
474
482
.10.1016/j.yjmcc.2009.08.024
49.
Strandness
,
D. E.
, and
Sumner
,
D. S.
,
1976
, “
Hemodynamics for Surgeons
,”
Br. J. Surg.
,
63
(
12
), p.
988
.
50.
Fata
,
B.
,
Carruthers
,
C. A.
,
Gibson
,
G.
,
Watkins
,
S.
,
Gottlieb
,
D.
,
Mayer
,
J. E.
, Jr.
, and
Sacks
,
M. S.
,
2013
, “
Regional Structural and Biomechanical Alterations of the Ovine Main Pulmonary Artery During Postnatal Growth
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021022
.10.1115/1.4023389
You do not currently have access to this content.