This study reformulates Murray's well-known principle of minimum work as applied to the cardiovascular system to include the effects of the shear-thinning rheology of blood. The viscous behavior is described using the extended modified power law (EMPL), which is a time-independent, but shear-thinning rheological constitutive equation. The resulting minimization problem is solved numerically for typical parameter ranges. The non-Newtonian analysis still predicts the classical cubic diameter dependence of the volume flow rate and the cubic branching law. The current analysis also predicts a constant wall shear stress throughout the vascular tree, albeit with a numerical value about 15–25% higher than the Newtonian analysis. Thus, experimentally observed deviations from the cubic branching law or the predicted constant wall shear stress in the vasculature cannot likely be attributed to blood's shear-thinning behavior. Further differences between the predictions of the non-Newtonian and the Newtonian analyses are highlighted, and the limitations of the Newtonian analysis are discussed. Finally, the range and limits of applicability of the current results as applied to the human arterial tree are also discussed.

References

1.
Murray
,
C. D.
,
1926
, “
The Physiological Principle of Minimum Work: I. The Vascular System and the Cost of Blood Volume
,”
Proc. Natl. Acad. Sci. U.S.A.
,
12
(
3
), pp.
207
214
.10.1073/pnas.12.3.207
2.
Zamir
,
M.
,
1977
, “
Shear Forces and Blood Vessel Radii in the Cardiovascular System
,”
J. Gen. Physiol.
,
69
(
4
), pp.
449
461
.10.1085/jgp.69.4.449
3.
Zamir
,
M.
, and
Medeiros
,
J.
,
1982
, “
Arterial Branching in Man and Monkey
,”
J. Gen. Physiol.
,
79
(
3
), pp.
353
360
.10.1085/jgp.79.3.353
4.
Zamir
,
M.
,
Wrigley
,
S.
, and
Langille
,
B.
,
1983
, “
Arterial Bifurcations in the Cardiovascular System of a Rat
,”
J. Gen. Physiol.
,
81
(
3
), pp.
325
335
.10.1085/jgp.81.3.325
5.
Rossitti
,
S.
, and
Löfgren
,
J.
,
1993
, “
Vascular Dimensions of the Cerebral Arteries Follow the Principle of Minimum Work
,”
Stroke
,
24
(
3
), pp.
371
377
.10.1161/01.STR.24.3.371
6.
Kassab
,
G. S.
, and
Fung
,
Y.-C. B.
,
1995
, “
The Pattern of Coronary Arteriolar Bifurcations and the Uniform Shear Hypothesis
,”
Ann. Biomed. Eng.
,
23
(
1
), pp.
13
20
.10.1007/BF02368296
7.
Taber
,
L. A.
,
Ng
,
S.
,
Quesnel
,
A. M.
,
Whatman
,
J.
, and
Carmen
,
C. J.
,
2001
, “
Investigating Murray's Law in the Chick Embryo
,”
J. Biomech.
,
34
(
1
), pp.
121
124
.10.1016/S0021-9290(00)00173-1
8.
Sather
,
B. A.
,
Hageman
,
D.
, and
Wagenseil
,
J. E.
,
2012
, “
Murray's Law in Elastin Haploinsufficient (Eln+/-) and Wild-Type (WT) Mice
,”
ASME J. Biomech. Eng.
,
134
(
12
), p.
124504
.10.1115/1.4023093
9.
Mayrovitz
,
H. N.
, and
Roy
,
J.
,
1983
, “
Microvascular Blood Flow: Evidence Indicating a Cubic Dependence on Arteriolar Diameter
,”
Am. J. Physiol.
,
245
(
6
), pp.
H1031
H1038
.
10.
Riva
,
C. E.
,
Grunwald
,
J. E.
,
Sinclair
,
S. H.
, and
Petrig
,
B.
,
1985
, “
Blood Velocity and Volumetric Flow Rate in Human Retinal Vessels
,”
Invest. Ophth. Vis. Sci.
,
26
(
8
), pp.
1124
1132
.
11.
Taber
,
L. A.
,
1998
, “
An Optimization Principle for Vascular Radius Including the Effects of Smooth Muscle Tone
,”
Biophys. J.
,
74
(
1
), pp.
109
114
.10.1016/S0006-3495(98)77772-0
12.
Mayrovitz
,
H. N.
,
1987
, “
An Optimal Flow-Radius Equation for Microvessel Non-Newtonian Blood Flow
,”
Microvasc. Res.
,
34
(
3
), pp.
380
384
.10.1016/0026-2862(87)90069-0
13.
LaBarbera
,
M.
,
1990
, “
Principles of Design of Fluid Transport Systems in Zoology
,”
Science
,
249
(
4972
), pp.
992
1000
.10.1126/science.2396104
14.
Capobianchi
,
M.
,
2008
, “
Pressure Drop Predictions for Laminar Flows of Extended Modified Power Law Fluids in Rectangular Ducts
,”
Int. J. Heat Mass Transfer
,
51
(
5
), pp.
1393
1401
.10.1016/j.ijheatmasstransfer.2007.11.019
15.
Revellin
,
R.
,
Rousset
,
F.
,
Baud
,
D.
, and
Bonjour
,
J.
,
2009
, “
Extension of Murray's Law Using a Non-Newtonian Model of Blood Flow
,”
Theor. Biol. Med. Modell.
,
6
(
1
), pp.
1
9
.10.1186/1742-4682-6-7
16.
Chien
,
S.
,
Usami
,
S.
,
Taylor
,
H. M.
,
Lundberg
,
J. L.
, and
Gregersen
,
M. I.
,
1966
, “
Effects of Hematocrit and Plasma Proteins on Human Blood Rheology at Low Shear Rates
,”
J. Appl. Physiol.
,
21
(
1
), pp.
81
87
.
17.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
,
2002
,
Numerical Recipes in C: The Art of Scientific Computing
, 2nd ed.,
Cambridge University Press
,
New York
.
18.
Pries
,
A.
,
Neuhaus
,
D.
, and
Gaehtgens
,
P.
,
1992
, “
Blood Viscosity in Tube Flow: Dependence on Diameter and Hematocrit
,”
Am. J. Physiol.
,
263
(6 Pt.2), pp.
H1770
H1778
.
19.
Alarcón
,
T.
,
Byrne
,
H. M.
, and
Maini
,
P. K.
,
2005
, “
A Design Principle for Vascular Beds: The Effects of Complex Blood Rheology
,”
Microvasc. Res.
,
69
(
3
), pp.
156
172
.10.1016/j.mvr.2005.02.002
20.
Gaenzer
,
H.
,
Neumayr
,
G.
,
Marschang
,
P.
,
Sturm
,
W.
,
Kirchmair
,
R.
, and
Patsch
,
J. R.
,
2001
, “
Flow-Mediated Vasodilation of the Femoral and Brachial Artery Induced by Exercise in Healthy Nonsmoking and Smoking Men
,”
J. Am. Coll. Cardiol.
,
38
(
5
), pp.
1313
1319
.10.1016/S0735-1097(01)01575-3
21.
Mitchell
,
G. F.
,
Parise
,
H.
,
Vita
,
J. A.
,
Larson
,
M. G.
,
Warner
,
E.
,
Keaney
,
J. F.
, Jr.
,
Keyes
,
M. J.
,
Levy
,
D.
,
Vasan
,
R. S.
, and
Benjamin
,
E. J.
,
2004
, “
Local Shear Stress and Brachial Artery Flow-Mediated Dilation: The Framingham Heart Study
,”
Hypertension
,
44
(
2
), pp.
134
139
.10.1161/01.HYP.0000137305.77635.68
22.
Loth
,
F.
,
Fischer
,
P. F.
, and
Bassiouny
,
H. S.
,
2008
, “
Blood Flow in End-to-Side Anastomoses
,”
Ann. Rev. Fluid Mech.
,
40
, pp.
367
393
.10.1146/annurev.fluid.40.111406.102119
23.
Cheng
,
C.
,
Helderman
,
F.
,
Tempel
,
D.
,
Segers
,
D.
,
Hierck
,
B.
,
Poelmann
,
R.
,
van Tol
,
A.
,
Duncker
,
D. J.
,
Robbers-Visser
,
D.
,
Ursem
,
N. T.
,
van Haperen
,
R.
,
Wentzel
,
J. J.
,
Gijsen
,
F.
,
van der Steen
,
A. F.
,
de Crom
,
R.
, and
Krams
,
R.
,
2007
, “
Large Variations in Absolute Wall Shear Stress Levels Within one Species and Between Species
,”
Atherosclerosis
,
195
(
2
), pp.
225
235
.10.1016/j.atherosclerosis.2006.11.019
24.
Dammers
,
R.
,
Stifft
,
F.
,
Tordoir
,
J. H. M.
,
Hammeleers
,
J. M. M.
,
Hoeks
,
A. P. G.
, and
Kitslaar
,
P. J. E. H. M.
,
2003
, “
Shear Stress Depends on Vascular Territory: Comparison Between Common Carotid and Brachial Artery
,”
J. Appl. Physiol.
,
94
(2), pp.
458
489
.10.1152/japplphysiol.00823.2002
25.
Wu
,
S. P.
,
Ringgaard
,
S.
,
Oyre
,
S.
,
Hansen
,
M. S.
,
Rasmus
,
S.
, and
Pedersen
,
E. M.
,
2004
, “
Wall Shear Rates Differ Between the Normal Carotid, Femoral, and Brachial Arteries: An In Vivo MRI Study
,”
J. Magn. Reson. Imaging
,
19
(
2
), pp.
188
193
.10.1002/jmri.10441
26.
Zamir
,
M.
,
Sinclair
,
P.
, and
Wonnacott
,
T. H.
,
1992
, “
Relation Between Diameter and Flow in Major Branches of the Arch of the Aorta
,”
J. Biomech.
,
25
(
11
), pp.
1303
1310
.10.1016/0021-9290(92)90285-9
27.
Liu
,
Y.
, and
Kassab
,
G. S.
,
2007
, “
Vascular Metabolic Dissipation in Murray's Law
,”
Am. J. Physiol. Heart Circ. Physiol.
,
292
(
3
), pp.
H1336
H1339
.10.1152/ajpheart.00906.2006
28.
Huo
,
Y.
, and
Kassab
,
G. S.
,
2012
, “
Intraspecific Scaling Laws of Vascular Trees
,”
J. Roy Soc. Interface
,
9
(
66
), pp.
190
200
.10.1098/rsif.2011.0270
29.
Brewster
,
R. A.
,
2013
, “
Pressure Drop Predictions for Laminar Fully-Developed Flows of Purely-Viscous Non-Newtonian Fluids in Circular Ducts
,”
ASME J. Fluid Eng.
,
135
(
10
), p.
101106
.10.1115/1.4024790
You do not currently have access to this content.