We present a new approach to designing three-dimensional, physically realizable porous femoral implants with spatially varying microstructures and effective material properties. We optimize over a simplified design domain to reduce shear stress at the bone-prosthetic interface with a constraint on the bone resorption measured using strain energy. This combination of objective and constraint aims to reduce implant failure and allows a detailed study of the implant designs obtained with a range of microstructure sets and parameters. The microstructure sets are either specified directly or constructed using shape interpolation between a finite number of microstructures optimized for multifunctional characteristics. We demonstrate that designs using varying microstructures outperform designs with a homogeneous microstructure for this femoral implant problem. Further, the choice of microstructure set has an impact on the objective values achieved and on the optimized implant designs. A proof-of-concept metal prototype fabricated via selective laser melting (SLM) demonstrates the manufacturability of designs obtained with our approach.

References

1.
Zheng
,
X.
,
Lee
,
H.
,
Weisgraber
,
T. H.
,
Shusteff
,
M.
,
Deotte
,
J.
,
Duoss
,
E. B.
,
Kuntz
,
J. D.
,
Biener
,
M. M.
,
Ge
,
Q.
,
Jackson
,
J. A.
,
Kucheyev
,
S. O.
,
Fang
,
N. X.
, and
Spadaccini
,
C. M.
,
2014
, “
Ultralight, Ultrastiff Mechanical Metamaterials
,”
Science
,
344
(
6190
), pp.
1373
1377
.
2.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Methods, and Applications
,
Springer Verlag
, Berlin.
3.
Rodrigues
,
H.
,
Guedes
,
J. M.
, and
Bendsoe
,
M.
,
2002
, “
Hierarchical Optimization of Material and Structure
,”
Struct. Multidiscip. Optim.
,
24
(
1
), pp.
1
10
.
4.
Coelho
,
P.
,
Fernandes
,
P.
,
Guedes
,
J.
, and
Rodrigues
,
H.
,
2008
, “
A Hierarchical Model for Concurrent Material and Topology Optimisation of Three-Dimensional Structures
,”
Struct. Multidiscip. Optim.
,
35
(
2
), pp.
107
115
.
5.
Cramer
,
A. D.
,
Challis
,
V. J.
, and
Roberts
,
A. P.
,
2016
, “
Microstructure Interpolation for Macroscopic Design
,”
Struct. Multidiscip. Optim.
,
53
(
3
), pp.
489
500
.
6.
Khanoki
,
S. A.
, and
Pasini
,
D.
,
2012
, “
Multiscale Design and Multiobjective Optimization of Orthopedic Hip Implants With Functionally Graded Cellular Material
,”
ASME J. Biomech. Eng.
,
134
(
3
), p.
031004
.
7.
Malchau
,
H.
,
Herberts
,
P.
,
Eisler
,
T.
,
Garellick
,
G.
, and
Söderman
,
P.
,
2002
, “
The Swedish Total Hip Replacement Register
,”
J. Bone Joint Surg.
,
84
(
Suppl 2
), pp.
S2
S20
.
8.
Kuiper
,
J.
, and
Huiskes
,
R.
,
1997
, “
Mathematical Optimization of Elastic Properties: Application to Cementless Hip Stem Design
,”
ASME J. Biomech. Eng.
,
119
(
2
), pp.
166
174
.
9.
Chanda
,
S.
,
Gupta
,
S.
, and
Pratihar
,
D. K.
,
2015
, “
A Genetic Algorithm-Based Multi-Objective Shape Optimization Scheme for Cementless Femoral Implant
,”
ASME J. Biomech. Eng.
,
137
(
3
), p.
034502
.
10.
Engh
,
C. A.
,
McGovern
,
T.
,
Bobyn
,
J.
, and
Harris
,
W. H.
,
1992
, “
A Quantitative Evaluation of Periprosthetic Bone-Remodeling After Cementless Total Hip Arthroplasty
,”
J. Bone Joint Surg. Am.
,
74
(
7
), pp.
1009
1020
.
11.
Fraldi
,
M.
,
Esposito
,
L.
,
Perrella
,
G.
,
Cutolo
,
A.
, and
Cowin
,
S.
,
2010
, “
Topological Optimization in Hip Prosthesis Design
,”
Biomech. Model. Mechanobiol.
,
9
(
4
), pp.
389
402
.
12.
Hoffman
,
O.
,
1967
, “
The Brittle Strength of Orthotropic Materials
,”
J. Compos. Mater.
,
1
(
2
), pp.
200
206
.
13.
Challis
,
V.
,
Roberts
,
A.
, and
Wilkins
,
A.
,
2008
, “
Design of Three Dimensional Isotropic Microstructures for Maximized Stiffness and Conductivity
,”
Int. J. Solids Struct.
,
45
(
14
), pp.
4130
4146
.
14.
Kang
,
H.
,
Lin
,
C.-Y.
, and
Hollister
,
S. J.
,
2010
, “
Topology Optimization of Three Dimensional Tissue Engineering Scaffold Architectures for Prescribed Bulk Modulus and Diffusivity
,”
Struct. Multidiscip. Optim.
,
42
(
4
), pp.
633
644
.
15.
Torquato
,
S.
, and
Donev
,
A.
,
2004
, “
Minimal Surfaces and Multifunctionality
,”
Proc. R. Soc. London, Ser. A
,
460
(
2047
), pp.
1849
1856
.
16.
Head
,
W. C.
,
Bauk
,
D. J.
, and
Emerson
,
R. H.
, Jr.
,
1995
, “
Titanium as the Material of Choice for Cementless Femoral Components in Total Hip Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
311
, pp.
85
90
.
17.
Zhang
,
L.
,
Klemm
,
D.
,
Eckert
,
J.
,
Hao
,
Y.
, and
Sercombe
,
T.
,
2011
, “
Manufacture by Selective Laser Melting and Mechanical Behavior of a Biomedical Ti–24Nb–4Zr–8Sn Alloy
,”
Scr. Mater.
,
65
(
1
), pp.
21
24
.
18.
Challis
,
V. J.
,
Xu
,
X.
,
Zhang
,
L. C.
,
Roberts
,
A. P.
,
Grotowski
,
J. F.
, and
Sercombe
,
T. B.
,
2014
, “
High Specific Strength and Stiffness Structures Produced Using Selective Laser Melting
,”
Mater. Des.
,
63
, pp.
783
788
.
19.
Williams
,
M.
,
1952
, “
Stress Singularities Resulting From Various Boundary Conditions
,”
ASME J. Appl. Mech.
,
19
(
4
), pp.
526
528
.
20.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
21.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
22.
Svanberg
,
K.
,
2002
, “
A Class of Globally Convergent Optimization Methods Based on Conservative Convex Seperable Approximations
,”
SIAM J. Optim.
,
12
(2), pp. 555–573.
23.
Camron
,
H.
,
Pilliar
,
R.
, and
Macnab
,
I.
,
1976
, “
The Rate of Bone Ingrowth Into Porous Metal
,”
J. Biomed. Mater. Res.
,
10
(
2
), pp.
295
302
.
24.
Boyan
,
B. D.
,
Hummert
,
T. W.
,
Dean
,
D. D.
, and
Schwartz
,
Z.
,
1996
, “
Role of Material Surfaces in Regulating Bone and Cartilage Cell Response
,”
Biomaterials
,
17
(
2
), pp.
137
146
.
25.
Khanoki
,
S. A.
, and
Pasini
,
D.
,
2013
, “
Fatigue Design of a Mechanically Biocompatible Lattice for a Proof-of-Concept Femoral Stem
,”
J. Mech. Behav. Biomed. Mater.
,
22
, pp.
65
83
.
You do not currently have access to this content.