Bicuspid aortic valve (BAV) is the most common type of congenital heart disease, occurring in 0.5–2% of the population, where the valve has only two rather than the three normal cusps. Valvular pathologies, such as aortic regurgitation and aortic stenosis, are associated with BAVs, thereby increasing the need for a better understanding of BAV kinematics and geometrical characteristics. The aim of this study is to investigate the influence of the nonfused cusp (NFC) angle in BAV type-1 configuration on the valve's structural and hemodynamic performance. Toward that goal, a parametric fluid–structure interaction (FSI) modeling approach of BAVs is presented. Four FSI models were generated with varying NFC angles between 120 deg and 180 deg. The FSI simulations were based on fully coupled structural and fluid dynamic solvers and corresponded to physiologic values, including the anisotropic hyper-elastic behavior of the tissue. The simulated angles led to different mechanical behavior, such as eccentric jet flow direction with a wider opening shape that was found for the smaller NFC angles, while a narrower opening orifice followed by increased jet flow velocity was observed for the larger NFC angles. Smaller NFC angles led to higher concentrated flow shear stress (FSS) on the NFC during peak systole, while higher maximal principal stresses were found in the raphe region during diastole. The proposed biomechanical models could explain the early failure of BAVs with decreased NFC angles, and suggests that a larger NFC angle is preferable in suture annuloplasty BAV repair surgery.

References

1.
Braverman
,
A. C.
,
Güven
,
H.
,
Beardslee
,
M. A.
,
Makan
,
M.
,
Kates
,
A. M.
, and
Moon
,
M. R.
,
2005
, “
The Bicuspid Aortic Valve
,”
Curr. Probl. Cardiol.
,
30
(
9
), pp.
470
522
.
2.
Roberts
,
W. C.
, and
Ko
,
J. M.
,
2005
, “
Frequency by Decades of Unicuspid, Bicuspid, and Tricuspid Aortic Valves in Adults Having Isolated Aortic Valve Replacement for Aortic Stenosis, With or Without Associated Aortic Regurgitation
,”
Circulation
,
111
(
7
), pp.
920
925
.
3.
Cedars
,
A.
, and
Braverman
,
A. C.
,
2012
, “
The Many Faces of Bicuspid Aortic Valve Disease
,”
Prog. Pediatr. Cardiol.
,
34
(
2
), pp.
91
96
.
4.
Thanassoulis
,
G.
,
Yip
,
J. W. L.
,
Filion
,
K.
,
Jamorski
,
M.
,
Webb
,
G.
,
Siu
,
S. C.
, and
Therrien
,
J.
,
2008
, “
Retrospective Study to Identify Predictors of the Presence and Rapid Progression of Aortic Dilatation in Patients With Bicuspid Aortic Valves
,”
Nat. Clin. Pract. Cardiovasc. Med.
,
5
(
12
), pp.
821
828
.
5.
Siu
,
S. C.
, and
Silversides
,
C. K.
,
2010
, “
Bicuspid Aortic Valve Disease
,”
J. Am. Coll. Cardiol.
,
55
(
25
), pp.
2789
2800
.
6.
Nistri
,
S.
,
Sorbo
,
M. D.
,
Marin
,
M.
,
Palisi
,
M.
,
Scognamiglio
,
R.
, and
Thiene
,
G.
,
1999
, “
Aortic Root Dilatation in Young Men With Normally Functioning Bicuspid Aortic Valves
,”
Heart
,
82
(
1
), pp.
19
22
.
7.
Michelena
,
H. I.
,
Desjardins
,
V. A.
,
Avierinos
,
J.-F.
,
Russo
,
A.
,
Nkomo
,
V. T.
,
Sundt
,
T. M.
,
Pellikka
,
P. A.
,
Tajik
,
A. J.
, and
Enriquez-Sarano
,
M.
,
2008
, “
Natural History of Asymptomatic Patients With Normally Functioning or Minimally Dysfunctional Bicuspid Aortic Valve in the Community
,”
Circulation
,
117
(
21
), pp.
2776
2784
.
8.
Tzemos
,
N.
,
Therrien
,
J.
,
Thanassoulis
,
G.
,
Tremblay
,
S.
,
Jamorski
,
M. T.
,
Webb
,
G. D.
, and
Siu
,
S. C.
,
2008
, “
Outcomes in Adults With Bicuspid Aortic Valves
,”
JAMA
,
300
(
11
), pp.
1317
1325
.
9.
Schäfers
,
H.-J.
,
Aicher
,
D.
,
Langer
,
F.
, and
Lausberg
,
H. F.
,
2007
, “
Preservation of the Bicuspid Aortic Valve
,”
Ann. Thorac. Surg.
,
83
(
2
), pp.
S740
S745
.
10.
Svensson
,
L. G.
,
Al Kindi
,
A. H.
,
Vivacqua
,
A.
,
Pettersson
,
G. B.
,
Gillinov
,
A. M.
,
Mihaljevic
,
T.
,
Roselli
,
E. E.
,
Sabik
,
J. F.
,
Griffin
,
B.
,
Hammer
,
D. F.
,
Rodriguez
,
L.
,
Williams
,
S. J.
,
Blackstone
,
E. H.
, and
Lytle
,
B. W.
,
2014
, “
Long-Term Durability of Bicuspid Aortic Valve Repair
,”
Ann. Thorac. Surg.
,
97
(
5
), pp.
1539
1547
.
11.
Sievers
,
H.-H.
, and
Schmidtke
,
C.
,
2007
, “
A Classification System for the Bicuspid Aortic Valve From 304 Surgical Specimens
,”
J. Thorac. Cardiovasc. Surg.
,
133
(
5
), pp.
1226
1233
.
12.
Thubrikar
,
M.
, 1990,
The Aortic Valve
,
CRC Press
,
Boca Raton, FL
.
13.
Sabet
,
H. Y.
,
Edwards
,
W. D.
,
Tazelaar
,
H. D.
, and
Daly
,
R. C.
,
1999
, “
Congenitally Bicuspid Aortic Valves: A Surgical Pathology Study of 542 Cases (1991 Through 1996) and a Literature Review of 2,715 Additional Cases
,”
Mayo Clin. Proc.
,
74
(
1
), pp.
14
26
.
14.
Balachandran
,
K.
,
Sucosky
,
P.
, and
Yoganathan
,
A. P.
,
2011
, “
Hemodynamics and Mechanobiology of Aortic Valve Inflammation and Calcification
,”
Int. J. Inflammation
,
2011
, p.
263870
.
15.
Robicsek
,
F.
,
Thubrikar
,
M. J.
,
Cook
,
J. W.
, and
Fowler
,
B.
,
2004
, “
The Congenitally Bicuspid Aortic Valve: How Does It Function? Why Does It Fail?
,”
Ann. Thorac. Surg.
,
77
(
1
), pp.
177
185
.
16.
Saikrishnan
,
N.
,
Yap
,
C.-H.
,
Milligan
,
N. C.
,
Vasilyev
,
N. V.
, and
Yoganathan
,
A. P.
,
2012
, “
In Vitro Characterization of Bicuspid Aortic Valve Hemodynamics Using Particle Image Velocimetry
,”
Ann. Biomed. Eng.
,
40
(
8
), pp.
1760
1775
.
17.
Seaman
,
C.
,
Akingba
,
G.
, and
Sucosky
,
P.
,
2014
, “
Steady Flow Hemodynamic and Energy Loss Measurements in Normal and Simulated Calcified Tricuspid and Bicuspid Aortic Valves
,”
ASME J. Biomech. Eng.
,
136
(
4
), p.
041001
.
18.
Jermihov
,
P. N.
,
2011
, “
Effect of Geometry on the Leaflet Stresses in Simulated Models of Congenital Bicuspid Aortic Valves
,”
Cardiovasc. Eng. Technol.
,
2
(
1
), pp.
48
56
.
19.
Conti
,
C. A.
,
Della Corte
,
A.
,
Votta
,
E.
,
Del Viscovo
,
L.
,
Bancone
,
C.
,
De Santo
,
L. S.
, and
Redaelli
,
A.
,
2010
, “
Biomechanical Implications of the Congenital Bicuspid Aortic Valve: A Finite Element Study of Aortic Root Function From In Vivo Data
,”
J. Thorac. Cardiovasc. Surg.
,
140
(
4
), pp.
890
896
.
20.
Chandran
,
K. B.
, and
Vigmostad
,
S. C.
,
2013
, “
Patient-Specific Bicuspid Valve Dynamics: Overview of Methods and Challenges
,”
J. Biomech.
,
46
(
2
), pp.
208
216
.
21.
Vergara
,
C.
,
Viscardi
,
F.
,
Antiga
,
L.
, and
Luciani
,
G. B.
,
2012
, “
Influence of Bicuspid Valve Geometry on Ascending Aortic Fluid Dynamics: A Parametric Study
,”
Artif. Organs
,
36
(
4
), pp.
368
378
.
22.
Marom
,
G.
,
2015
, “
Numerical Methods for Fluid–Structure Interaction Models of Aortic Valves
,”
Arch. Comput. Methods Eng.
,
22
(
4
), pp.
595
620
.
23.
Vy
,
P.
,
Auffret
,
V.
,
Badel
,
P.
,
Rochette
,
M.
,
Le Breton
,
H.
,
Haigron
,
P.
, and
Avril
,
S.
,
2016
, “
Review of Patient-Specific Simulations of Transcatheter Aortic Valve Implantation
,”
Int. J. Adv. Eng. Sci. Appl. Math.
,
8
(
1
), pp.
2
24
.
24.
Kamensky
,
D.
,
Hsu
,
M. C.
,
Yu
,
Y.
,
Evans
,
J. A.
,
Sacks
,
M. S.
, and
Hughes
,
T. J. R.
,
2017
, “
Immersogeometric Cardiovascular Fluid–Structure Interaction Analysis With Divergence-Conforming B-Splines
,”
Comput. Methods Appl. Mech. Eng.
,
314
, pp.
408
472
.
25.
Fedele
,
M.
,
Faggiano
,
E.
,
Dedè
,
L.
, and
Quarteroni
,
A.
,
2017
, “
A Patient-Specific Aortic Valve Model Based on Moving Resistive Immersed Implicit Surfaces
,”
Biomech. Model. Mechanobiol.
,
16
(
5
), pp.
1779
1803
.
26.
Mao
,
W.
,
Caballero
,
A.
,
McKay
,
R.
,
Primiano
,
C.
, and
Sun
,
W.
,
2017
, “
Fully-Coupled Fluid-Structure Interaction Simulation of the Aortic and Mitral Valves in a Realistic 3D Left Ventricle Model
,”
PLoS One
,
12
(
9
), pp.
1
21
.
27.
Chandra
,
S.
,
Rajamannan
,
N. M.
, and
Sucosky
,
P.
,
2012
, “
Computational Assessment of Bicuspid Aortic Valve Wall-Shear Stress: Implications for Calcific Aortic Valve Disease
,”
Biomech. Model. Mechanobiol.
,
11
(
7
), pp.
1085
1096
.
28.
Kuan
,
M. Y. S.
, and
Espino
,
D. M.
,
2015
, “
Systolic Fluid-Structure Interaction Model of the Congenitally Bicuspid Aortic Valve: Assessment of Modelling Requirements
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
12
), pp.
1305
1320
.
29.
Katayama
,
S.
,
Umetani
,
N.
,
Hisada
,
T.
, and
Sugiura
,
S.
,
2013
, “
Bicuspid Aortic Valves Undergo Excessive Strain During Opening: A Simulation Study
,”
J. Thorac. Cardiovasc. Surg.
,
145
(
6
), pp.
1570
1576
.
30.
Marom
,
G.
,
Kim
,
H.-S.
,
Rosenfeld
,
M.
,
Raanani
,
E.
, and
Haj-Ali
,
R.
,
2013
, “
Fully Coupled Fluid-Structure Interaction Model of Congenital Bicuspid Aortic Valves: Effect of Asymmetry on Hemodynamics
,”
Med. Biol. Eng. Comput.
,
51
(
8
), pp.
839
848
.
31.
Weinberg
,
E. J.
, and
Kaazempur Mofrad
,
M. R.
,
2008
, “
A Multiscale Computational Comparison of the Bicuspid and Tricuspid Aortic Valves in Relation to Calcific Aortic Stenosis
,”
J. Biomech.
,
41
(
16
), pp.
3482
3487
.
32.
Cao
,
K.
, and
Sucosky
,
P.
,
2015
, “
Effect of Bicuspid Aortic Valve Cusp Fusion on Aorta Wall Shear Stress: Preliminary Computational Assessment and Implication for Aortic Dilation
,”
World J. Cardiovasc. Dis.
,
5
(
6
), pp.
129
140
.
33.
Aicher
,
D.
,
Kunihara
,
T.
,
Abou Issa
,
O.
,
Brittner
,
B.
,
Gräber
,
S.
, and
Schäfers
,
H.-J.
,
2011
, “
Valve Configuration Determines Long-Term Results After Repair of the Bicuspid Aortic Valve
,”
Circulation
,
123
(
2
), pp.
178
185
.
34.
Schneider
,
U.
,
Hofmann
,
C.
,
Aicher
,
D.
,
Takahashi
,
H.
,
Miura
,
Y.
, and
Schäfers
,
H.-J.
,
2017
, “
Suture Annuloplasty Significantly Improves the Durability of Bicuspid Aortic Valve Repair
,”
Ann. Thorac. Surg.
,
103
(
2
), pp.
504
510
.
35.
Della Corte
,
A.
,
Body
,
S. C.
,
Booher
,
A. M.
,
Schaefers
,
H.-J.
,
Milewski
,
R. K.
,
Michelena
,
H. I.
,
Evangelista
,
A.
,
Pibarot
,
P.
,
Mathieu
,
P.
,
Limongelli
,
G.
,
Shekar
,
P. S.
,
Aranki
,
S. F.
,
Ballotta
,
A.
,
Di Benedetto
,
G.
,
Sakalihasan
,
N.
,
Nappi
,
G.
,
Eagle
,
K. A.
,
Bavaria
,
J. E.
,
Frigiola
,
A.
, and
Sundt
,
T. M.
,
2014
, “
Surgical Treatment of Bicuspid Aortic Valve Disease: Knowledge Gaps and Research Perspectives
,”
J. Thorac. Cardiovasc. Surg.
,
147
(
6
), pp.
1749
1757.
36.
Haj-Ali
,
R.
,
Marom
,
G.
,
Ben Zekry
,
S.
,
Rosenfeld
,
M.
, and
Raanani
,
E.
,
2012
, “
A General Three-Dimensional Parametric Geometry of the Native Aortic Valve and Root for Biomechanical Modeling
,”
J. Biomech.
,
45
(
14
), pp.
2392
2397
.
37.
Mega
,
M.
,
Marom
,
G.
,
Halevi
,
R.
,
Hamdan
,
A.
,
Bluestein
,
D.
, and
Haj-Ali
,
R.
,
2016
, “
Imaging Analysis of Collagen Fiber Networks in Cusps of Porcine Aortic Valves: Effect of Their Local Distribution and Alignment on Valve Functionality
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
9
), pp.
1002
1008
.
38.
Marom
,
G.
,
Peleg
,
M.
,
Halevi
,
R.
,
Rosenfeld
,
M.
,
Raanani
,
E.
,
Hamdan
,
A.
, and
Haj-Ali
,
R.
,
2013
, “
Fluid-Structure Interaction Model of Aortic Valve With Porcine-Specific Collagen Fiber Alignment in the Cusps
,”
ASME J. Biomech. Eng.
,
135
(
10
), p.
101001
.
39.
Gundiah
,
N.
,
Kam
,
K.
,
Matthews
,
P. B.
,
Guccione
,
J.
,
Dwyer
,
H. A.
,
Saloner
,
D.
,
Chuter
,
T. A. M.
,
Guy
,
T. S.
,
Ratcliffe
,
M. B.
, and
Tseng
,
E. E.
,
2008
, “
Asymmetric Mechanical Properties of Porcine Aortic Sinuses
,”
Ann. Thorac. Surg.
,
85
(
5
), pp.
1631
1638
.
40.
Missirlis
,
Y. F.
, and
Chong
,
M.
,
1978
, “
Aortic Valve Mechanics—Part I: Material Properties of Natural Porcine Aortic Valves
,”
J. Bioeng.
,
2
(
3–4
), pp.
287
300
.http://europepmc.org/abstract/med/711721
41.
Kim
,
H. S.
,
2009
, “
Nonlinear Multi-Scale Anisotropic Material and Structural Models for Prosthetic and Native Aortic Heart Valves
,”
Ph.D. thesis
, Georgia Institute of Technology, Atlanta, GA.https://smartech.gatech.edu/handle/1853/29671
42.
Marom
,
G.
,
Haj-Ali
,
R.
,
Rosenfeld
,
M.
,
Schäfers
,
H. J.
, and
Raanani
,
E.
,
2013
, “
Aortic Root Numeric Model: Annulus Diameter Prediction of Effective Height and Coaptation in Post-Aortic Valve Repair
,”
J. Thorac. Cardiovasc. Surg.
,
145
(
2
), pp.
406
411
.
43.
Grande-Allen
,
K. J.
,
Cochran
,
R. P.
,
Reinhall
,
P. G.
, and
Kunzelman
,
K. S.
,
2000
, “
Re-Creation of Sinuses Is Important for Sparing the Aortic Valve: A Finite Element Study
,”
J. Thorac. Cardiovasc. Surg.
,
119
(
4
), pp.
753
763
.
44.
Soncini
,
M.
,
Votta
,
E.
,
Zinicchino
,
S.
,
Burrone
,
V.
,
Fumero
,
R.
,
Mangini
,
A.
,
Lemma
,
M.
,
Antona
,
C.
, and
Redaelli
,
A.
,
2006
, “
Finite Element Simulations of the Physiological Aortic Root and Valve Sparing Corrections
,”
J. Mech. Med. Biol.
,
6
(
1
), pp.
91
99
.
45.
Haj-Ali
,
R.
,
Dasi
,
L. P.
,
Kim
,
H. S.
,
Choi
,
J.
,
Leo
,
H. W.
, and
Yoganathan
,
A. P.
,
2008
, “
Structural Simulations of Prosthetic Tri-Leaflet Aortic Heart Valves
,”
J. Biomech.
,
41
(
7
), pp.
1510
1519
.
46.
De Hart
,
J.
,
Baaijens
,
F. P. T.
,
Peters
,
G. W. M.
, and
Schreurs
,
P. J. G.
,
2003
, “
A Computational Fluid-Structure Interaction Analysis of a Fiber-Reinforced Stentless Aortic Valve
,”
J. Biomech.
,
36
(
5
), pp.
699
712
.
47.
Marom
,
G.
,
Haj-Ali
,
R.
,
Raanani
,
E.
,
Schäfers
,
H.-J.
, and
Rosenfeld
,
M.
,
2012
, “
A Fluid-Structure Interaction Model of the Aortic Valve With Coaptation and Compliant Aortic Root
,”
Med. Biol. Eng. Comput.
,
50
(
2
), pp.
173
182
.
48.
Yoganathan
,
A. P.
,
Chandran
,
K. B.
, and
Sotiropoulos
,
F.
,
2005
, “
Flow in Prosthetic Heart Valves: State-of-the-Art and Future Directions
,”
Ann. Biomed. Eng.
,
33
(
12
), pp.
1689
1694
.
49.
Wang
,
S. H.
,
Lee
,
L. P.
, and
Lee
,
J. S.
,
2001
, “
A Linear Relation Between the Compressibility and Density of Blood
,”
J. Acoust. Soc. Am.
,
109
(
1
), pp.
390
396
.
50.
Mahadevia
,
R.
,
Barker
,
A. J.
,
Schnell
,
S.
,
Entezari
,
P.
,
Kansal
,
P.
,
Fedak
,
P. W. M.
,
Malaisrie
,
S. C.
,
McCarthy
,
P.
,
Collins
,
J.
,
Carr
,
J.
, and
Markl
,
M.
,
2014
, “
Bicuspid Aortic Cusp Fusion Morphology Alters Aortic Three-Dimensional Outflow Patterns, Wall Shear Stress, and Expression of Aortopathy
,”
Circulation
,
129
(
6
), pp.
673
682
.
51.
Stephens
,
E. H.
,
Hope
,
T. A.
,
Kari
,
F. A.
,
Kvitting
,
J. P. E.
,
Liang
,
D. H.
,
Herfkens
,
R. J.
, and
Miller
,
D. C.
,
2015
, “
Greater Asymmetric Wall Shear Stress in Sievers' Type 1/LR Compared With 0/LAT Bicuspid Aortic Valves After Valve-Sparing Aortic Root Replacement
,”
J. Thorac. Cardiovasc. Surg.
,
150
(
1
), pp.
59
68
.
52.
Guzzardi
,
D. G.
,
Barker
,
A. J.
,
Van Ooij
,
P.
,
Malaisrie
,
S. C.
,
Puthumana
,
J. J.
,
Belke
,
D. D.
,
Mewhort
,
H. E. M.
,
Svystonyuk
,
D. A.
,
Kang
,
S.
,
Verma
,
S.
,
Collins
,
J.
,
Carr
,
J.
,
Bonow
,
R. O.
,
Markl
,
M.
,
Thomas
,
J. D.
,
McCarthy
,
P. M.
, and
Fedak
,
P. W. M.
,
2015
, “
Valve-Related Hemodynamics Mediate Human Bicuspid Aortopathy: Insights From Wall Shear Stress Mapping
,”
J. Am. Coll. Cardiol.
,
66
(
8
), pp.
892
900
.
53.
Atkins
,
S. K.
,
Cao
,
K.
,
Rajamannan
,
N. M.
, and
Sucosky
,
P.
,
2014
, “
Bicuspid Aortic Valve Hemodynamics Induces Abnormal Medial Remodeling in the Convexity of Porcine Ascending Aortas
,”
Biomech. Model. Mechanobiol.
,
13
(
6
), pp.
1209
1225
.
54.
Richards
,
K. E.
,
Deserranno
,
D.
,
Donal
,
E.
,
Greenberg
,
N. L.
,
Thomas
,
J. D.
, and
Garcia
,
M. J.
,
2004
, “
Influence of Structural Geometry on the Severity of Bicuspid Aortic Stenosis
,”
Am. J. Physiol. Heart Circ. Physiol.
,
287
(
3
), pp.
H1410
H1416
.
55.
Miyahara
,
S.
,
Abe
,
N.
,
Matsueda
,
T.
,
Izawa
,
N.
,
Yamazato
,
T.
,
Nomura
,
Y.
,
Kitamura
,
A.
,
Sato
,
S.
,
Takahashi
,
H.
,
Inoue
,
T.
,
Matsumori
,
M.
, and
Okita
,
Y.
,
2016
, “
Impact of Positional Relationship of Commissures on Cusp Function After Valve-Sparing Root Replacement for Regurgitant Bicuspid Aortic Valve
,”
Eur. J. Cardiothorac. Surg.
,
50
(
1
), pp.
75
81
.
56.
Vallabhajosyula
,
P.
,
Szeto
,
W. Y.
,
Komlo
,
C. M.
,
Ryan
,
L. P.
,
Wallen
,
T. J.
,
Gorman
,
R. C.
,
Desai
,
N. D.
, and
Bavaria
,
J. E.
,
2014
, “
Geometric Orientation of the Aortic Neoroot in Patients With Raphed Bicuspid Aortic Valve Disease Undergoing Primary Cusp Repair and a Root Reimplantation Procedure
,”
Eur. J. Cardiothorac. Surg.
,
45
(
1
), pp.
174
180
.
57.
Sun
,
L.
,
Chandra
,
S.
, and
Sucosky
,
P.
,
2012
, “
Ex Vivo Evidence for the Contribution of Hemodynamic Shear Stress Abnormalities to the Early Pathogenesis of Calcific Bicuspid Aortic Valve Disease
,”
PLoS One
,
7
(
10
), p.
e48843
.
58.
Sun
,
L.
,
Rajamannan
,
N. M.
, and
Sucosky
,
P.
,
2013
, “
Defining the Role of Fluid Shear Stress in the Expression of Early Signaling Markers for Calcific Aortic Valve Disease
,”
PLoS One
,
8
(
12
), p.
e84433
.
59.
Halevi
,
R.
,
Hamdan
,
A.
,
Marom
,
G.
,
Lavon
,
K.
,
Ben-Zekry
,
S.
,
Raanani
,
E.
,
Bluestein
,
D.
, and
Haj-Ali
,
R.
,
2016
, “
Fluid–Structure Interaction Modeling of Calcific Aortic Valve Disease Using Patient-Specific Three-Dimensional Calcification Scans
,”
Med. Biol. Eng. Comput.
,
54
(
11
), pp.
1683
1694
.
60.
Nishimura
,
R. A.
,
Otto
,
C. M.
,
Bonow
,
R. O.
,
Carabello
,
B. A.
,
Erwin
,
J. P.
,
Guyton
,
R. A.
,
O'Gara
,
P. T.
,
Ruiz
,
C. E.
,
Skubas
,
N. J.
,
Sorajja
,
P.
,
Sundt
,
T. M.
, and
Thomas
,
J. D.
,
2014
, “
2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines
,”
J. Am. Coll. Cardiol.
,
63
(
22
), pp.
2438
2488
.
61.
Cao
,
K.
,
BukaČ
,
M.
, and
Sucosky
,
P.
,
2016
, “
Three-Dimensional Macro-Scale Assessment of Regional and Temporal Wall Shear Stress Characteristics on Aortic Valve Leaflets
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
6
), pp.
603
613
.
62.
Dumont
,
K.
,
Vierendeels
,
J.
,
Kaminsky
,
R.
,
van Nooten
,
G.
,
Verdonck
,
P.
, and
Bluestein
,
D.
,
2007
, “
Comparison of the Hemodynamic and Thrombogenic Performance of Two Bileaflet Mechanical Heart Valves Using a CFD/FSI Model
,”
ASME J. Biomech. Eng.
,
129
(
4
), pp.
558
565
.
You do not currently have access to this content.