Aneurysm recurrence is the most critical concern following coil embolization of a cerebral aneurysm. Adequate packing density (PD) and coil uniformity are believed necessary to achieve sufficient flow stagnation, which decreases the risk of aneurysm recurrence. The effect of coil distribution on the extent of flow stagnation, however, especially in cases of dense packing (high PD), has received less attention. Thus, the cause of aneurysm recurrence despite dense packing is still an open question. The primary aim of this study is to evaluate the effect of local coil density on the extent of blood flow stagnation in densely coiled aneurysms. For this purpose, we developed a robust computational framework to determine blood flow using a Cartesian grid method, by which the complex fluid pathways in coiled aneurysms could be flexibly treated using an implicit function. This tool allowed us to conduct blood flow analyses in two patient-specific geometries with 50 coil distribution patterns in each aneurysm at clinically adequate PD. The results demonstrated that dense packing in the aneurysm may not necessarily block completely the inflow into the aneurysm and local flow that formed in the neck region, whose strength was inversely related to this local PD. This finding suggests that local coil density in the neck region still plays an important role in disturbing the remaining local flow, which possibly prevents thrombus formation in a whole aneurysm sac, increasing the risk of aneurysm regrowth and subsequent recurrence.

References

1.
Ferns
,
S. P.
,
Sprengers
,
M. E. S.
,
van Rooij
,
W. J.
,
Rinkel
,
G. J. E.
,
Van Rijn
,
J. C.
,
Bipat
,
S.
,
Sluzewski
,
M.
, and
Majoie
,
C. B. L. M.
,
2009
, “
Coiling of Intracranial Aneurysms: A Systematic Review on Initial Occlusion and Reopening and Retreatment Rates
,”
Stroke
,
40
(
8
), pp.
e523
e529
.
2.
Raymond
,
J.
,
Guilbert
,
F.
,
Weill
,
A.
,
Georganos
,
S. A.
,
Juravsky
,
L.
,
Lamoureux
,
J.
,
Chagnon
,
M.
, and
Roy
,
D.
,
2003
, “
Long-Term Angiographic Recurrences after Selective Endovascular Treatment of Aneurysms With Detachable Coils
,”
Stroke
,
34
(
6
), pp.
1398
1403
.
3.
Roy
,
D.
,
Milot
,
G.
, and
Raymond
,
J.
,
2001
, “
Endovascular Treatment of Unruptured Aneurysms
,”
Stroke
,
32
(
9
), pp.
1998
2004
.
4.
Sluzewski
,
M.
,
van Rooij
,
W. J.
,
Slob
,
M. J.
,
Bescós
,
J. O.
,
Slump
,
C. H.
,
Wijnalda
,
D.
,
Rooij
,
W. J. V.
, and
Wijnalda
,
D.
,
2004
, “
Relation Between Aneurysm Volume, Packing, and Compaction in 145 Cerebral Aneurysms Treated With Coils
,”
Radiology
,
231
(
3
), pp.
653
658
.
5.
Raymond
,
J.
,
Darsaut
,
T.
,
Salazkin
,
I.
,
Gevry
,
G.
, and
Bouzeghrane
,
F.
,
2008
, “
Mechanisms of Occlusion and Recanalization in Canine Carotid Bifurcation Aneurysms Embolized With Platinum Coils: An Alternative Concept
,”
AJNR Am. J. Neuroradiol.
,
29
(
4
), pp.
745
–7
52
.
6.
Hasan
,
D. M.
,
Nadareyshvili
,
A. I.
,
Hoppe
,
A. L.
,
Mahaney
,
K. B.
,
Kung
,
D. K.
, and
Raghavan
,
M. L.
,
2012
, “
Cerebral Aneurysm Sac Growth as the Etiology of Recurrence After Successful Coil Embolization
,”
Stroke
,
43
(
3
), pp.
866
868
.
7.
Groden
,
C.
,
Laudan
,
J.
,
Gatchell
,
S.
, and
Zeumer
,
H.
,
2001
, “
Three-Dimensional Pulsatile Flow Simulation Before and After Endovascular Coil Embolization of a Terminal Cerebral Aneurysm
,”
J. Cereb. Blood Flow Metab.
,
21
(
12
), pp.
1464
1471
.
8.
Cha
,
K. S.
,
Balaras
,
E.
,
Lieber
,
B. B.
,
Sadasivan
,
C.
, and
Wakhloo
,
A. K.
,
2007
, “
Modeling the Interaction of Coils With the Local Blood Flow After Coil Embolization of Intracranial Aneurysms
,”
ASME J. Biomech. Eng.
,
129
(
6
), pp.
873
879
.
9.
Kakalis
,
N. M. P.
,
Mitsos
,
A. P.
,
Byrne
,
J. V.
, and
Ventikos
,
Y.
,
2008
, “
The Haemodynamics of Endovascular Aneurysm Treatment: A Computational Modelling Approach for Estimating the Influence of Multiple Coil Deployment
,”
IEEE Trans. Med. Imaging
,
27
(
6
), pp.
814
824
.
10.
Mitsos
,
A. P.
,
Kakalis
,
N. M. P.
,
Ventikos
,
Y. P.
, and
Byrne
,
J. V.
,
2008
, “
Haemodynamic Simulation of Aneurysm Coiling in an Anatomically Accurate Computational Fluid Dynamics Model: Technical Note
,”
Neuroradiology
,
50
(
4
), pp.
341
347
.
11.
Morales
,
H. G.
,
Kim
,
M.
,
Vivas
,
E. E.
,
Villa-Uriol
,
M. C.
,
Larrabide
,
I.
,
Sola
,
T.
,
Guimaraens
,
L.
, and
Frangi
,
A. F.
,
2011
, “
How Do Coil Configuration and Packing Density Influence Intra-Aneurysmal Hemodynamics?
,”
Am. J. Neuroradiol.
,
32
(
10
), pp.
1935
1941
.
12.
Morales
,
H. G.
,
Larrabide
,
I.
,
Geers
,
A. J.
,
San Román
,
L.
,
Blasco
,
J.
,
Macho
,
J. M.
, and
Frangi
,
A. F.
,
2013
, “
A Virtual Coiling Technique for Image-Based Aneurysm Models by Dynamic Path Planning
,”
IEEE Trans. Med. Imaging
,
32
(
1
), pp.
119
129
.
13.
Babiker
,
M. H.
,
Chong
,
B.
,
Gonzalez
,
L. F.
,
Cheema
,
S.
, and
Frakes
,
D. H.
,
2013
, “
Finite Element Modeling of Embolic Coil Deployment: Multifactor Characterization of Treatment Effects on Cerebral Aneurysm Hemodynamics
,”
J. Biomech.
,
46
(
16
), pp.
2809
2816
.
14.
Damiano
,
R. J.
,
Ma
,
D.
,
Xiang
,
J.
,
Siddiqui
,
A. H.
,
Snyder
,
K. V.
, and
Meng
,
H.
,
2015
, “
Finite Element Modeling of Endovascular Coiling and Flow Diversion Enables Hemodynamic Prediction of Complex Treatment Strategies for Intracranial Aneurysm
,”
J. Biomech.
,
48
(
12
), pp.
3332
3340
.
15.
Nair
,
P.
,
Chong
,
B. W.
,
Indahlastari
,
A.
,
Ryan
,
J.
,
Workman
,
C.
,
Haithem Babiker
,
M.
,
Yadollahi Farsani
,
H.
,
Baccin
,
C. E.
, and
Frakes
,
D.
,
2016
, “
Hemodynamic Characterization of Geometric Cerebral Aneurysm Templates Treated With Embolic Coils
,”
ASME J. Biomech. Eng.
,
138
(
2
), p.
021011
.
16.
Otani
,
T.
,
Ii
,
S.
,
Shigematsu
,
T.
,
Fujinaka
,
T.
,
Hirata
,
M.
,
Ozaki
,
T.
, and
Wada
,
S.
,
2017
, “
Computational Study for the Effects of Coil Configuration on Blood Flow Characteristics in Coil-Embolized Cerebral Aneurysm
,”
Med. Biol. Eng. Comput.
,
55
(
5
), pp.
697
710
.
17.
Piotin
,
M.
,
Spelle
,
L.
,
Mounayer
,
C.
,
Salles-Rezende
,
M. T.
,
Giansante-Abud
,
D.
,
Vanzin-Santos
,
R.
, and
Moret
,
J.
,
2007
, “
Intracranial Aneurysms: Treatment With Bare Platinum Coils—Aneurysm Packing, Complex Coils, and Angiographic Recurrence
,”
Radiology
,
243
(
2
), pp.
500
508
.
18.
Mehra
,
M.
,
Hurley
,
M. C.
,
Gounis
,
M. J.
,
King
,
R. M.
,
Shaibani
,
A.
,
Dabus
,
G.
,
Labdag
,
F. E.
,
Levy
,
E. I.
, and
Bendok
,
B. R.
,
2011
, “
The Impact of Coil Shape Design on Angiographic Occlusion, Packing Density and Coil Mass Uniformity in Aneurysm Embolization: An In Vivo Study
,”
J. Neurointerv. Surg.
,
3
(
2
), pp.
131
136
.
19.
Chueh
,
J.
,
Vedantham
,
S.
,
Wakhloo
,
A. K.
,
Carniato
,
S. L.
,
Puri
,
A. S.
,
Bzura
,
C.
,
Coffin
,
S.
,
Bogdanov
,
A. A.
, and
Gounis
,
M. J.
,
2015
, “
Aneurysm Permeability Following Coil Embolization: Packing Density and Coil Distribution
,”
J. Neurointerv. Surg.
,
7
(
9
), pp.
676
681
.
20.
Otani
,
T.
,
Ii
,
S.
,
Shigematsu
,
T.
,
Fujinaka
,
T.
,
Hirata
,
M.
,
Ozaki
,
T.
, and
Wada
,
S.
,
2016
, “
A Computational Approach for Blood Flow Analysis in the Densely Coiled Cerebral Aneurysm
,” IEEE 16th International Conference on Bioinformatics and Bioengineering (
BIBE
), Taichung, Taiwan, Oct. 31–Nov. 2, pp. 342–345.
21.
Ohtake
,
Y.
,
Belyaev
,
A.
,
Alexa
,
M.
,
Turk
,
G.
, and
Seidel
,
H.-P.
,
2003
, “
Multi-Level Partition of Unity Implicits
,”
ACM Trans. Graph.
,
22
(
3
), pp.
463
470
.
22.
Sethian
,
J. A.
,
1999
,
Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Material Science
,
Cambridge University Press
,
Cambridge, UK
.
23.
Ford
,
M. D.
,
Hoi
,
Y.
,
Piccinelli
,
M.
,
Antiga
,
L.
, and
Steinman
,
D. A.
,
2009
, “
An Objective Approach to Digital Removal of Saccular Aneurysms: Technique and Applications
,”
Br. J. Radiol.
,
82
(
SI 1
), pp.
S55
S61
.
24.
White
,
J. B.
,
Ken
,
C. G. M.
,
Cloft
,
H. J.
, and
Kallmes
,
D. F.
,
2008
, “
Coils in a Nutshell: A Review of Coil Physical Properties
,”
Am. J. Neuroradiol.
,
29
(
7
), pp.
1242
1246
.
25.
Morales
,
H. G.
,
Larrabide
,
I.
,
Geers
,
A. J.
,
Aguilar
,
M. L.
, and
Frangi
,
A. F.
,
2013
, “
Newtonian and Non-Newtonian Blood Flow in Coiled Cerebral Aneurysms
,”
J. Biomech.
,
46
(
13
), pp.
2158
2164
.
26.
Weymouth
,
G. D.
, and
Yue
,
D. K. P.
,
2011
, “
Boundary Data Immersion Method for Cartesian-Grid Simulations of Fluid-Body Interaction Problems
,”
J. Comput. Phys.
,
230
(
16
), pp.
6233
6247
.
27.
Ii
,
S.
,
Mohd Aib
,
M. A. H.
,
Watanabe
,
Y.
, and
Wada
,
S.
,
2017
, “
Physically Consistent Data Assimilation Method Based on Feedback Control for Patient-Specific Blood Flow Analysis
,”
Int. J. Numer. Methods Biomed. Eng.
,
34
(1), p. e2910.
28.
Dukowicz
,
J. K.
, and
Dvinsky
,
A. S.
,
1992
, “
Approximate Factorization as a High Order Splitting for the Implicit Incompressible Flow Equations
,”
J. Comput. Phys.
,
102
(
2
), pp.
336
347
.
29.
Liu
,
X. X.-D.
,
Osher
,
S.
, and
Chan
,
T.
,
1994
, “
Weighted Essentially Non-Oscillatory Schemes
,”
J. Comput. Phys.
,
115
(
1
), pp.
200
212
.
30.
Jiang
,
G.-S.
, and
Shu
,
C.-W.
,
1996
, “
Efficient Implementation of Weighted ENO Schemes
,”
J. Comput. Phys.
,
126
(
1
), pp.
202
228
.
31.
Cebral
,
J. R.
,
Castro
,
M. A.
,
Putman
,
C. M.
, and
Alperin
,
N.
,
2008
, “
Flow-Area Relationship in Internal Carotid and Vertebral Arteries
,”
Physiol. Meas.
,
29
(
5
), pp.
585
594
.
32.
Geers
,
A.
,
Larrabide
,
I.
,
Morales
,
H.
, and
Frangi
,
A.
,
2014
, “
Approximating Hemodynamics of Cerebral Aneurysms With Steady Flow Simulations
,”
J. Biomech.
,
47
(
1
), pp.
178
185
.
33.
Hathcock
,
J. J.
,
2006
, “
Flow Effects on Coagulation and Thrombosis
,”
Arterioscler. Thromb. Vasc. Biol.
,
26
(
8
), pp.
1729
1737
.
34.
Sadasivan
,
C.
,
Fiorella
,
D. J.
,
Woo
,
H. H.
,
Lieber
,
B. B.
,
Surgery
,
N.
,
Road
,
N.
, and
Brook
,
S.
,
2013
, “
Physical Factors Effecting Cerebral Aneurysm Pathophysiology
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1347
1365
.
35.
Cebral
,
J. R.
, and
Raschi
,
M.
,
2013
, “
Suggested Connections Between Risk Factors of Intracranial Aneurysms: A Review
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1366
1383
.
36.
Weisel
,
J. W.
,
2008
, “
Biophysics. Enigmas of Blood Clot Elasticity
,”
Science
,
320
(
5875
), pp.
456
457
.
37.
Cito
,
S.
,
Mazzeo
,
M. D.
, and
Badimon
,
L.
,
2013
, “
A Review of Macroscopic Thrombus Modeling Methods
,”
Thromb. Res.
,
131
(
2
), pp.
116
124
.
38.
Sadato
,
A.
,
Adachi
,
K.
,
Hayakawa
,
M.
,
Kato
,
Y.
, and
Hirose
,
Y.
,
2016
, “
Effects of Anatomic Characteristics of Aneurysms on Packing Density in Endovascular Coil Embolization: Analysis of a Single Center's Experience
,”
Neurosurg. Rev.
,
39
(
1
), pp.
109
114
.
39.
Morales
,
H. G.
,
Larrabide
,
I.
,
Geers
,
A. J.
,
Dai
,
D.
,
Kallmes
,
D. F.
, and
Frangi
,
A. F.
,
2012
, “
Analysis and Quantification of Endovascular Coil Distribution Inside Saccular Aneurysms Using Histological Images
,”
J. Neurointerv. Surg.
,
5
(
Suppl. 3
), pp.
33
38
.
40.
Sadasivan
,
C.
,
Brownstein
,
J.
,
Patel
,
B.
,
Dholakia
,
R.
,
Santore
,
J.
,
Al-Mufti
,
F.
,
Puig
,
E.
,
Rakian
,
A.
,
Fernandez-Prada
,
K. D.
,
Elhammady
,
M. S.
,
Farhat
,
H.
,
Fiorella
,
D. J.
,
Woo
,
H. H.
,
Aziz-Sultan
,
M. A.
, and
Lieber
,
B. B.
,
2013
, “
In Vitro Quantification of the Size Distribution of Intrasaccular Voids Left after Endovascular Coiling of Cerebral Aneurysms
,”
Cardiovasc. Eng. Technol.
,
4
(
1
), pp.
63
74
.
You do not currently have access to this content.