This study addresses the dynamic response to pulsatile physiological blood flow and pressure of a woven Dacron graft currently used in thoracic aortic surgery. The model of the prosthesis assumes a cylindrical orthotropic shell described by means of nonlinear Novozhilov shell theory. The blood flow is modeled as Newtonian pulsatile flow, and unsteady viscous effects are included. Coupled fluid–structure Lagrange equations for open systems with wave propagation subject to pulsatile flow are applied. Physiological waveforms of blood pressure and velocity are approximated with the first eight harmonics of the corresponding Fourier series. Time responses of the prosthetic wall radial displacement are considered for two physiological conditions: at rest (60 bpm) and at high heart rate (180 bpm). While the response at 60 bpm reproduces the behavior of the pulsatile pressure, higher harmonics frequency contributions are observed at 180 bpm altering the shape of the time response. Frequency-responses show resonance peaks for heart rates between 130 bpm and 200 bpm due to higher harmonics of the pulsatile flow excitation. These resonant peaks correspond to unwanted high-frequency radial oscillations of the vessel wall that can compromise the long-term functioning of the prosthesis in case of significant physical activity. Thanks to this study, the dynamic response of Dacron prostheses to pulsatile flow can be understood as well as some possible complications in case of significant physical activity.

References

1.
Cronenwett
,
J. L.
, and
Johnston
,
K. W.
,
2014
,
Rutherford's Vascular Surgery
,
Elsevier Health Sciences
, Philadelphia, PA.
2.
Bronzino
,
J. D.
,
1999
,
Biomedical Engineering Handbook
,
CRC Press
, Boca Raton, FL.
3.
Silver
,
F.
,
1994
,
Biomaterials, Medical Devices and Tissue Engineering: An Integrated Approach
, Chapman & Hall, London.
4.
Sauvage
,
L.
,
1986
, “
Dacron Arterial Grafts
,”
Vascular Graft Update: Safety and Performance
, ASTM Publication, Fairfield, PA.
5.
Tremblay
,
D.
,
Zigras
,
T.
,
Cartier
,
R.
,
Leduc
,
L.
,
Butany
,
J.
,
Mongrain
,
R.
, and
Leask
,
R. L.
,
2009
, “
A Comparison of Mechanical Properties of Materials Used in Aortic Arch Reconstruction
,”
Ann. Thorac. Surg.
,
88
(
5
), pp.
1484
1491
.
6.
Chlupac
,
J.
,
Filova
,
E.
, and
Bacakova
,
L.
,
2009
, “
Blood Vessel Replacement: 50 Years of Development and Tissue Engineering Paradigms in Vascular Surgery
,”
Physiol. Res.
,
58
, pp. 119–139.
7.
Spadaccio
,
C.
,
Nappi
,
F.
,
Al-Attar
,
N.
,
Sutherland
,
F. W.
,
Acar
,
C.
,
Nenna
,
A.
,
Trombetta
,
M.
,
Chello
,
M.
, and
Rainer
,
A.
,
2016
, “
Old Myths, New Concerns: The Long-Term Effects of Ascending Aorta Replacement With Dacron Grafts. Not All That Glitters is Gold
,”
J. Cardiovasc. Transl. Res.
,
9
(
4
), pp.
334
342
.
8.
Spadaccio
,
C.
,
Rainer
,
A.
,
Barbato
,
R.
,
Chello
,
M.
, and
Meyns
,
B.
,
2013
, “
The Fate of Large-Diameter Dacron® Vascular Grafts in Surgical Practice: Are We Really Satisfied?
,”
Int. J. Cardiol.
,
168
(
5
), pp.
5028
5029
.
9.
Miyawaki
,
F.
,
How
,
T.
, and
Annis
,
D.
,
1990
, “
Effect of Compliance Mismatch on Flow Disturbances in a Model of an Arterial Graft Replacement
,”
Med. Biol. Eng. Comput.
,
28
(
5
), pp.
457
464
.
10.
Maeta
,
H.
, and
Hori
,
M.
,
1985
, “
Effects of a Lack of Aortic ‘Windkessel’ Properties on the Left Ventricle
,”
Jpn. Circ. J.
,
49
(
2
), pp.
232
237
.
11.
Appleyard
,
R. F.
, and
Sauvage
,
L. R.
,
1986
, “
Haemodynamic Consequences of Arterial Replacement With a Synthetic Graft
,”
Cardiovasc. Res.
,
20
(
1
), pp.
26
35
.
12.
Kim
,
S. Y.
,
Hinkamp
,
T. J.
,
Jacobs
,
W. R.
,
Lichtenberg
,
R. C.
,
Posniak
,
H.
, and
Pifarré
,
R.
,
1995
, “
Effect of an Inelastic Aortic Synthetic Vascular Graft on Exercise Hemodynamics
,”
Ann. Thorac. Surg.
,
59
(
4
), pp.
981
989
.
13.
McDonald
,
D. A.
,
1974
,
Blood Flow in Arteries
,
Edward Arnold
,
London
.
14.
Westerhof
,
N.
,
Lankhaar
,
J.-W.
, and
Westerhof
,
B. E.
,
2009
, “
The Arterial Windkessel
,”
Med. Biol. Eng. Comput.
,
47
(
2
), pp.
131
141
.
15.
Mehigan
,
D.
,
Fitzpatrick
,
B.
,
Browne
,
H.
, and
Bouchier-Hayes
,
D.
,
1984
, “
Is Compliance Mismatch the Major Cause of Anastomotic Arterial Aneurysms? Analysis of 42 Cases
,”
J. Cardiovasc. Surg.
,
26
, pp.
147
150
.
16.
Abbott
,
W. M.
,
Megerman
,
J.
,
Hasson
,
J. E.
,
L'Italien
,
G.
, and
Warnock
,
D. F.
,
1987
, “
Effect of Compliance Mismatch on Vascular Graft Patency
,”
J. Vasc. Surg.
,
5
(
2
), pp.
376
382
.
17.
Lee
,
J. M.
, and
Wilson
,
G. J.
,
1986
, “
Anisotropic Tensile Viscoelastic Properties of Vascular Graft Materials Tested at Low Strain Rates
,”
Biomaterials
,
7
(
6
), pp.
423
431
.
18.
Hasegawa
,
M.
, and
Azuma
,
T.
,
1979
, “
Mechanical Properties of Synthetic Arterial Grafts
,”
J. Biomech.
,
12
(
7
), pp.
509
517
.
19.
Tubaldi
,
E.
,
Amabili
,
M.
, and
Païdoussis
,
M. P.
,
2016
, “
Fluid–Structure Interaction for Nonlinear Response of Shells Conveying Pulsatile Flow
,”
J. Sound Vib.
,
371
, pp.
252
276
.
20.
Amabili
,
M.
,
Pellicano
,
F.
, and
Païdoussis
,
M.
,
2000
, “
Non-Linear Dynamics and Stability of Circular Cylindrical Shells Containing Flowing Fluid—Part IV: Large-Amplitude Vibrations With Flow
,”
J. Sound Vib.
,
237
(
4
), pp.
641
666
.
21.
Amabili
,
M.
,
Karagiozis
,
K.
, and
Païdoussis
,
M.
,
2009
, “
Effect of Geometric Imperfections on Non-Linear Stability of Circular Cylindrical Shells Conveying Fluid
,”
Int. J. Non-Linear Mech.
,
44
(
3
), pp.
276
289
.
22.
Païdoussis
,
M. P.
,
2003
,
Fluid-Structure Interactions: Slender Structures and Axial Flow
, Vol.
2
,
Academic Press
, London.
23.
Shapiro
,
A. H.
,
1977
, “
Steady Flow in in Collapsible Tubes
,”
ASME J. Biomech. Eng.
,
99
(
3
), pp.
126
147
.
24.
Knowlton
,
F.
, and
Starling
,
E.
,
1912
, “
The Influence of Variations in Temperature and Blood‐Pressure on the Performance of the Isolated Mammalian Heart
,”
J. Physiol.
,
44
(
3
), pp.
206
219
.
25.
Kamm
,
R. D.
, and
Shapiro
,
A. H.
,
1979
, “
Unsteady Flow in a Collapsible Tube Subjected to External Pressure or Body Forces
,”
J. Fluid Mech.
,
95
(
01
), pp.
1
78
.
26.
Womersley
,
J. R.
,
1955
, “
Oscillatory Motion of a Viscous Liquid in a Thin-Walled Elastic Tube-I: The Linear Approximation for Long Waves
,”
Philos. Mag.
,
46
(
373
), pp.
199
221
.
27.
Moodie
,
T. B.
,
Mainardi
,
F.
, and
Tait
,
R. J.
,
1985
, “
Pressure Pulses in Fluid Filled Distensible Tubes
,”
Meccanica
,
20
(
1
), pp.
33
37
.
28.
Bertram
,
C.
,
2009
, “
Fluid Flow in Distensible Vessels
,”
Clin. Exp. Pharmacol. Physiol.
,
36
(
2
), pp.
206
216
.
29.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
,
1999
, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA
,
282
(
21
), pp.
2035
2042
.
30.
Laurent
,
S.
,
Boutouyrie
,
P.
,
Asmar
,
R.
,
Gautier
,
I.
,
Laloux
,
B.
,
Guize
,
L.
,
Ducimetiere
,
P.
, and
Benetos
,
A.
,
2001
, “
Aortic Stiffness is an Independent Predictor of All-Cause and Cardiovascular Mortality in Hypertensive Patients
,”
Hypertension
,
37
(
5
), pp.
1236
1241
.
31.
Korteweg
,
D. J.
,
1878
, “
Ueber die Fortpflanzungsgeschwindigkeit des Schalles in elastischen Röhren
,”
Ann. Phys.
,
241
(
12
), pp.
525
542
.
32.
Fung
,
Y. C.
,
1997
,
Biomechanics: Circulation
,
Springer Science & Business Media
, New York.
33.
Pedley
,
T. J.
,
1980
,
The Fluid Mechanics of Large Blood Vessels
,
Cambridge University Press
, Cambridge, UK.
34.
Nichols
,
W.
,
O'Rourke
,
M.
, and
Vlachopoulos
,
C.
,
2011
,
McDonald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles
,
CRC Press
, Boca Raton, FL.
35.
Hughes
,
T. J.
,
1974
,
A Study of the One-Dimensional Theory of Arterial Pulse Propagation, Structural Engineering Laboratory
, University of California Berkeley, Berkeley, CA.
36.
van de Vosse
,
F. N.
, and
Stergiopulos
,
N.
,
2011
, “
Pulse Wave Propagation in the Arterial Tree
,”
Annu. Rev. Fluid Mech.
,
43
(
1
), pp.
467
499
.
37.
Chandra
,
S.
,
Raut
,
S. S.
,
Jana
,
A.
,
Biederman
,
R. W.
,
Doyle
,
M.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2013
, “
Fluid-Structure Interaction Modeling of Abdominal Aortic Aneurysms: The Impact of Patient-Specific Inflow Conditions and Fluid/Solid Coupling
,”
ASME J. Biomech. Eng.
,
135
(
8
), p.
081001
.
38.
Heil
,
M.
, and
Hazel
,
A. L.
,
2011
, “
Fluid-Structure Interaction in Internal Physiological Flows
,”
Annu. Rev. Fluid Mech.
,
43
(
1
), pp.
141
162
.
39.
Taylor
,
C. A.
,
Hughes
,
T. J.
, and
Zarins
,
C. K.
,
1998
, “
Finite Element Modeling of Blood Flow in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
158
(
1–2
), pp.
155
196
.
40.
Hughes
,
T. J.
,
Liu
,
W. K.
, and
Zimmermann
,
T. K.
,
1981
, “
Lagrangian-Eulerian Finite Element Formulation for Incompressible Viscous Flows
,”
Comput. Methods Appl. Mech. Eng.
,
29
(
3
), pp.
329
349
.
41.
Taylor
,
C. A.
, and
Figueroa
,
C.
,
2009
, “
Patient-Specific Modeling of Cardiovascular Mechanics
,”
Annu. Rev. Biomed. Eng.
,
11
(
1
), pp.
109
134
.
42.
Formaggia
,
L.
,
Gerbeau
,
J.-F.
,
Nobile
,
F.
, and
Quarteroni
,
A.
,
2001
, “
On the Coupling of 3D and 1D Navier–Stokes Equations for Flow Problems in Compliant Vessels
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
6–7
), pp.
561
582
.
43.
Quarteroni
,
A.
, and
Veneziani
,
A.
,
2003
, “
Analysis of a Geometrical Multiscale Model Based on the Coupling of ODE and PDE for Blood Flow Simulations
,”
Multiscale Model. Simul.
,
1
(
2
), pp.
173
195
.
44.
Olufsen
,
M. S.
,
Peskin
,
C. S.
,
Kim
,
W. Y.
,
Pedersen
,
E. M.
,
Nadim
,
A.
, and
Larsen
,
J.
,
2000
, “
Numerical Simulation and Experimental Validation of Blood Flow in Arteries With Structured-Tree Outflow Conditions
,”
Ann. Biomed. Eng.
,
28
(
11
), pp.
1281
1299
.
45.
Hughes
,
T. J.
, and
Lubliner
,
J.
,
1973
, “
On the One-Dimensional Theory of Blood Flow in the Larger Vessels
,”
Math. Biosci.
,
18
(
1–2
), pp.
161
170
.
46.
Fung
,
Y. C.
,
1993
,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer Science & Business Media
, New York.
47.
Humphrey
,
J. D.
,
2013
,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer Science & Business Media
, New York.
48.
Han
,
H.-C.
,
Chesnutt
,
J. K.
,
Garcia
,
J. R.
,
Liu
,
Q.
, and
Wen
,
Q.
,
2013
, “
Artery Buckling: New Phenotypes, Models, and Applications
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1399
1410
.
49.
Tang
,
D.
,
Yang
,
C.
,
Kobayashi
,
S.
, and
Ku
,
D. N.
,
2001
, “
Steady Flow and Wall Compression in Stenotic Arteries: A Three-Dimensional Thick-Wall Model With Fluid-Wall Interactions
,”
ASME J. Biomech. Eng.
,
123
(
6
), pp.
548
557
.
50.
Pedley
,
T.
, and
Luo
,
X.
,
1998
, “
Modelling Flow and Oscillations in Collapsible Tubes
,”
Theor. Comput. Fluid Dyn.
,
10
(
1–4
), pp.
277
294
.
51.
Amabili
,
M.
,
Karazis
,
K.
,
Mongrain
,
R.
,
Païdoussis
,
M. P.
, and
Cartier
,
R.
,
2012
, “
A Three-Layer Model for Buckling of a Human Aortic Segment Under Specific Flow-Pressure Conditions
,”
Int. J. Numer. Methods Biomed. Eng.
,
28
(
5
), pp.
495
512
.
52.
Cheng
,
G. C.
,
Loree
,
H. M.
,
Kamm
,
R. D.
,
Fishbein
,
M. C.
, and
Lee
,
R. T.
,
1993
, “
Distribution of Circumferential Stress in Ruptured and Stable Atherosclerotic Lesions. A Structural Analysis With Histopathological Correlation
,”
Circulation
,
87
(
4
), pp.
1179
1187
.
53.
Tang
,
D.
,
Yang
,
C.
,
Kobayashi
,
S.
,
Zheng
,
J.
,
Woodard
,
P. K.
,
Teng
,
Z.
,
Billiar
,
K.
,
Bach
,
R.
, and
Ku
,
D. N.
,
2009
, “
3D MRI-Based Anisotropic FSI Models With Cyclic Bending for Human Coronary Atherosclerotic Plaque Mechanical Analysis
,”
ASME J. Biomech. Eng.
,
131
(
6
), p. 061010.
54.
Taylor
,
C. A.
, and
Humphrey
,
J.
,
2009
, “
Open Problems in Computational Vascular Biomechanics: Hemodynamics and Arterial Wall Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
45–46
), pp.
3514
3523
.
55.
Hale
,
J.
,
McDonald
,
D.
, and
Womersley
,
J.
,
1955
, “
Velocity Profiles of Oscillating Arterial Flow, With Some Calculations of Viscous Drag and the Reynolds Number
,”
J. Physiol.
,
128
(
3
), pp.
629
640
.
56.
Ku
,
D. N.
,
1997
, “
Blood Flow in Arteries
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
399
434
.
57.
Setchi
,
A.
,
Mestel
,
A. J.
,
Siggers
,
J. H.
,
Parker
,
K. H.
,
Tan
,
M. W.
, and
Wong
,
K.
,
2013
, “
Mathematical Model of Flow Through the Patent Ductus Arteriosus
,”
J. Math. Biol.
,
67
(
6–7
), pp.
1487
1506
.
58.
Tubaldi
,
E.
,
Amabili
,
M.
, and
Païdoussis
,
M. P.
,
2017
, “
Nonlinear Dynamics of Shells Conveying Pulsatile Flow With Pulse-Wave Propagation. Theory and Numerical Results for a Single Harmonic Pulsation
,”
J. Sound Vib.
,
396
, pp.
217
245
.
59.
De Langre
,
E.
,
2000
, “
Ondes variqueuses absolument instables dans un canal élastique
,”
C. R. De L'Académie Des Sci.-Ser. IIB-Mech. Phys. Astron.
,
328
(
1
), pp.
61
65
.
60.
Wolfram
,
S.
,
1999
,
The Mathematica® Book, Version 4
,
Cambridge University Press
, Cambridge, UK.
61.
Rocha
,
L.
,
Sepulveda
,
A.
,
Pontes
,
A.
,
Viana
,
J.
,
Santos
,
I. C.
, and
Tavares
,
J. M. R.
,
2011
, “
Study of Pressure Sensors Placement Using an Abdominal Aortic Aneurysm (AAA) Model
,”
Technology and Medical Sciences
, Taylor & Francis, London, p.
261
.
62.
Mills
,
C.
,
Gabe
,
I.
,
Gault
,
J.
,
Mason
,
D.
,
Ross
,
J.
,
Braunwald
,
E.
, and
Shillingford
,
J.
,
1970
, “
Pressure-Flow Relationships and Vascular Impedance in Man
,”
Cardiovasc. Res.
,
4
(
4
), pp.
405
417
.
63.
Rowland
,
T. W.
,
Garrard
,
M.
,
Marwood
,
S.
,
Guerra
,
M. E.
,
Roche
,
D.
, and
Unnithan
,
V. B.
,
2009
, “
Myocardial Performance During Progressive Exercise in Athletic Adolescent Males
,”
Med. Sci. Sports Exercise
,
41
(
9
), pp.
1721
1728
.
You do not currently have access to this content.