Abstract

The establishment of in vivo, noninvasive patient-specific, and regionally resolved techniques to quantify aortic properties is key to improving clinical risk assessment and scientific understanding of vascular growth and remodeling. A promising and novel technique to reach this goal is an inverse finite element method (FEM) approach that utilizes magnetic resonance imaging (MRI)-derived displacement fields from displacement encoding with stimulated echoes (DENSE). Previous studies using DENSE MRI suggested that the infrarenal abdominal aorta (IAA) deforms heterogeneously during the cardiac cycle. We hypothesize that this heterogeneity is driven in healthy aortas by regional adventitial tethering and interaction with perivascular tissues, which can be modeled with elastic foundation boundary conditions (EFBCs) using a collection of radially oriented springs with varying stiffness with circumferential distribution. Nine healthy IAAs were modeled using previously acquired patient-specific imaging and displacement fields from steady-state free procession (SSFP) and DENSE MRI, followed by assessment of aortic wall properties and heterogeneous EFBC parameters using inverse FEM. In contrast to traction-free boundary condition, prescription of EFBC reduced the nodal displacement error by 60% and reproduced the DENSE-derived heterogeneous strain distribution. Estimated aortic wall properties were in reasonable agreement with previously reported experimental biaxial testing data. The distribution of normalized EFBC stiffness was consistent among all patients and spatially correlated to standard peri-aortic anatomical features, suggesting that EFBC could be generalized for human adults with normal anatomy. This approach is computationally inexpensive, making it ideal for clinical research and future incorporation into cardiovascular fluid–structure analyses.

References

1.
Kamenskiy
,
A. V.
,
Dzenis
,
Y. A.
,
Kazmi
,
S. A. J.
,
Pemberton
,
M. A.
,
Pipinos
,
I. I.
,
Phillips
,
Y. N.
,
Herber
,
K.
,
Woodford
,
T.
,
Bowen
,
R. E.
,
Lomneth
,
C. S.
, and
Mactaggart
,
J. N.
,
2014
, “
Biaxial Mechanical Properties of the Human Thoracic and Abdominal Aorta, Common Carotid, Subclavian, Renal and Common Iliac Arteries
,”
Biomech. Model Mechanobiol.
,
13
(
6
), pp.
1341
1359
.10.1007/s10237-014-0576-6
2.
Safar
,
M. E.
,
2018
, “
Arterial Stiffness as a Risk Factor for Clinical Hypertension
,”
Nat. Rev. Cardiol.
,
15
(
2
), pp.
97
105
.10.1038/nrcardio.2017.155
3.
Akhtar
,
R.
,
Sherratt
,
M. J.
,
Cruickshank
,
J. K.
, and
Derby
,
B.
,
2011
, “
Characterizing the Elastic Properties of Tissues
,”
Mater. Today
,
14
(
3
), pp.
96
105
.10.1016/S1369-7021(11)70059-1
4.
Wan
,
W.
,
Dixon
,
J. B.
, and
Gleason
,
R. L.
,
2012
, “
Constitutive Modeling of Mouse Carotid Arteries Using Experimentally Measured Microstructural Parameters
,”
Biophys. J.
,
102
(
12
), pp.
2916
2925
.10.1016/j.bpj.2012.04.035
5.
Vande Geest
,
J. P.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
,
2004
, “
Age Dependency of the Biaxial Biomechanical Behavior of Human Abdominal Aorta
,”
ASME J. Biomech. Eng.
,
126
(
6
), pp.
815
822
.10.1115/1.1824121
6.
Vande Geest
,
J. P.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
The Effects of Aneurysm on the Biaxial Mechanical Behavior of Human Abdominal Aorta
,”
J. Biomech.
,
39
(
7
), pp.
1324
1334
.10.1016/j.jbiomech.2005.03.003
7.
Hodis
,
S.
, and
Zamir
,
M.
,
2011
, “
Pulse Wave Velocity as a Diagnostic Index: The Pitfalls of Tethering Versus Stiffening of the Arterial Wall
,”
J. Biomech.
,
44
(
7
), pp.
1367
1373
.10.1016/j.jbiomech.2010.12.029
8.
Messas
,
E.
,
Pernot
,
M.
, and
Couade
,
M.
,
2013
, “
Arterial Wall Elasticity: State of the Art and Future Prospects
,”
Diagn. Interventional Imaging
,
94
(
5
), pp.
561
569
.10.1016/j.diii.2013.01.025
9.
Erbel
,
R.
,
2006
, “
Aortic Dimensions and the Risk of Dissection
,”
Heart
,
92
(
1
), pp.
137
142
.10.1136/hrt.2004.055111
10.
Abbasi
,
M.
,
Barakat
,
M. S.
,
Vahidkhah
,
K.
, and
Azadani
,
A. N.
,
2016
, “
Characterization of Three-Dimensional Anisotropic Heart Valve Tissue Mechanical Properties Using Inverse Finite Element Analysis
,”
J. Mech. Behav. Biomed. Mater.
,
62
, pp.
33
44
.10.1016/j.jmbbm.2016.04.031
11.
Franquet
,
A.
,
Avril
,
S.
,
Le Riche
,
R.
,
Badel
,
P.
,
Schneider
,
F. C.
,
Li
,
Z. Y.
,
Boissier
,
C.
, and
Favre
,
J. P.
,
2013
, “
A New Method for the In Vivo Identification of Mechanical Properties in Arteries From Cine MRI Images: Theoretical Framework and Validation
,”
IEEE Trans. Med. Imaging
,
32
(
8
), pp.
1448
1461
.10.1109/TMI.2013.2257828
12.
Liu
,
M.
,
Liang
,
L.
,
Liu
,
H.
,
Zhang
,
M.
,
Martin
,
C.
, and
Sun
,
W.
,
2019
, “
On the Computation of In Vivo Transmural Mean Stress of Patient-Specific Aortic Wall
,”
Biomech. Model. Mechanobiol.
,
18
(
2
), pp.
387
398
.10.1007/s10237-018-1089-5
13.
Masson
,
I.
,
Fassot
,
C.
, and
Zidi
,
M.
,
2010
, “
Finite Dynamic Deformations of a Hyperelastic, Anisotropic, Incompressible and Prestressed Tube. Applications to In Vivo Arteries
,”
Eur. J. Mech. A
,
29
(
4
), pp.
523
529
.10.1016/j.euromechsol.2010.02.007
14.
Liu
,
M.
,
Liang
,
L.
, and
Sun
,
W.
,
2018
, “
Estimation of In Vivo Mechanical Properties of the Aortic Wall: A Multi-Resolution Direct Search Approach
,”
J. Mech. Behav. Biomed. Mater.
,
77
, pp.
649
659
.10.1016/j.jmbbm.2017.10.022
15.
Spronck
,
B.
, and
Humphrey
,
J. D.
,
2019
, “
Arterial Stiffness: Different Metrics, Different Meanings
,”
ASME J. Biomech. Eng.
,
141
(
9
), p.
091004
.10.1115/1.4043486
16.
Aletras
,
A. H.
, and
Wen
,
H.
,
2001
, “
Mixed Echo Train Acquisition Displacement Encoding With Stimulated Echoes: An Optimized DENSE Method for In Vivo Functional Imaging of the Human Heart
,”
Magn. Reson. Med.
,
46
(
3
), pp.
523
534
.10.1002/mrm.1223
17.
Wilson
,
J. S.
,
Zhong
,
X.
,
Hair
,
J.
,
Robert Taylor
,
W.
, and
Oshinski
,
J. N.
,
2019
, “
In Vivo Quantification of Regional Circumferential Green Strain in the Thoracic and Abdominal Aorta by Two-Dimensional Spiral Cine DENSE MRI
,”
ASME J. Biomech. Eng.
,
141
(
6
), p.
060901
.10.1115/1.4040910
18.
Iffrig
,
E.
,
Wilson
,
J. S.
,
Zhong
,
X.
, and
Oshinski
,
J. N.
,
2019
, “
Demonstration of Circumferential Heterogeneity in Displacement and Strain in the Abdominal Aortic Wall by Spiral Cine DENSE MRI
,”
J. Magn. Reson. Imaging
,
49
(
3
), pp.
731
743
.10.1002/jmri.26304
19.
Selvadurai
,
A. P. S.
, and
Gladwell
,
G. M. L.
,
1980
, “
Elastic Analysis of Soil-Foundation Interaction
,”
ASME J. Appl. Mech.
,
47
(
1
), pp.
219
219
.10.1115/1.3153622
20.
Kerr
,
A. D.
,
1964
, “
Elastic and Viscoelastic Foundation Models
,”
ASME J. Appl. Mech.
,
31
(
3
), pp.
491
498
.10.1115/1.3629667
21.
Chuong
,
C. J.
, and
Fung
,
Y. C.
,
1983
, “
Three-Dimensional Stress Distribution in Arteries
,”
ASME J. Biomech. Eng.
,
105
(
3
), pp.
268
274
.10.1115/1.3138417
22.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2012
, “
FEBio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011005
.10.1115/1.4005694
23.
Ateshian
,
G. A.
, and
Costa
,
K. D.
,
2009
, “
A Frame-Invariant Formulation of Fung Elasticity
,”
ASME J. Biomech. Eng.
,
42
(
6
), pp.
781
785
.10.1016/j.jbiomech.2009.01.015
24.
Humphrey
,
J.
, and
Epstein
,
M.
,
2002
, “
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,”
ASME Appl. Mech. Rev.
,
55
(
5
), pp.
B103
B104
.10.1115/1.1497492
25.
Wong
,
J.
, and
Kuhl
,
E.
,
2014
, “
Generating Fibre Orientation Maps in Human Heart Models Using Poisson Interpolation
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
11
), pp.
1217
1226
.10.1080/10255842.2012.739167
26.
Nemes
,
A.
,
Gavallér
,
H.
,
Csajbók
,
É. É.
,
Forster
,
T.
, and
Csanády
,
M.
,
2008
, “
Obesity is Associated With Aortic Enlargement and Increased Stiffness: An Echocardiographic Study
,”
Int. J. Cardiovasc. Imaging
,
24
(
2
), pp.
165
171
.10.1007/s10554-007-9248-2
27.
Shibata
,
S.
, and
Levine
,
B. D.
,
2011
, “
Biological Aortic Age Derived From the Arterial Pressure Waveform
,”
J. Appl. Physiol.
,
110
(
4
), pp.
981
987
.10.1152/japplphysiol.01261.2010
28.
Fung
,
Y. C.
, and
Liu
,
S. Q.
,
1992
, “
Strain Distribution in Small Blood Vessels With Zero-Stress State Taken  Into Consideration
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
262
(
2
), pp.
31
32
.10.1152/ajpheart.1992.262.2.H544
29.
Stålhand
,
J.
, and
Klarbring
,
A.
,
2005
, “
Aorta In Vivo Parameter Identification Using an Axial Force Constraint
,”
Biomech. Model. Mechanobiol.
,
3
(
4
), pp.
191
199
.10.1007/s10237-004-0057-4
30.
Alastrué
,
V.
,
Peña
,
E.
,
Martínez
,
M. Á.
, and
Doblaré
,
M.
,
2007
, “
Assessing the Use of the ‘Opening Angle Method’ to Enforce Residual Stresses in Patient-Specific Arteries
,”
Ann. Biomed. Eng.
,
35
(
10
), pp.
1821
1837
.10.1007/s10439-007-9352-4
31.
Stålhand
,
J.
,
2009
, “
Determination of Human Arterial Wall Parameters From Clinical Data
,”
Biomech. Model. Mechanobiol.
,
8
(
2
), pp.
141
148
.10.1007/s10237-008-0124-3
32.
Labrosse
,
M. R.
,
Gerson
,
E. R.
,
Veinot
,
J. P.
, and
Beller
,
C. J.
,
2013
, “
Mechanical Characterization of Human Aortas From Pressurization Testing and a Paradigm Shift for Circumferential Residual Stress
,”
J. Mech. Behav. Biomed. Mater.
,
17
, pp.
44
55
.10.1016/j.jmbbm.2012.08.004
33.
Okamoto
,
R. J.
,
Wagenseil
,
J. E.
,
DeLong
,
W. R.
,
Peterson
,
S. J.
,
Kouchoukos
,
N. T.
, and
Sundt
,
T. M.
, III
,
2002
, “
Mechanical Properties of Dilated Human Ascending Aorta
,”
Ann. Biomed. Eng.
,
30
(
5
), pp.
624
635
.10.1114/1.1484220
34.
Schulze-Bauer
,
C. A. J.
, and
Holzapfel
,
G. A.
,
2003
, “
Determination of Constitutive Equations for Human Arteries From Clinical Data
,”
J. Biomech.
,
36
(
2
), pp.
165
169
.10.1016/S0021-9290(02)00367-6
35.
Azadani
,
A. N.
,
Chitsaz
,
S.
,
Matthews
,
P. B.
,
Jaussaud
,
N.
,
Leung
,
J.
,
Tsinman
,
T.
,
Ge
,
L.
, and
Tseng
,
E. E.
,
2012
, “
Comparison of Mechanical Properties of Human Ascending Aorta and Aortic Sinuses
,”
Ann. Thorac. Surg.
,
93
(
1
), pp.
87
94
.10.1016/j.athoracsur.2011.08.002
36.
Kural
,
M. H.
,
Cai
,
M.
,
Tang
,
D.
,
Gwyther
,
T.
,
Zheng
,
J.
, and
Billiar
,
K. L.
,
2012
, “
Planar Biaxial Characterization of Diseased Human Coronary and Carotid Arteries for Computational Modeling
,”
J. Biomech.
,
45
(
5
), pp.
790
798
.10.1016/j.jbiomech.2011.11.019
37.
Humphrey
,
J. D.
, and
Holzapfel
,
G. A.
,
2012
, “
Mechanics, Mechanobiology, and Modeling of Human Abdominal Aorta and Aneurysms
,”
J. Biomech.
,
45
(
5
), pp.
805
814
.10.1016/j.jbiomech.2011.11.021
38.
Joldes
,
G. R.
,
Miller
,
K.
,
Wittek
,
A.
, and
Doyle
,
B.
,
2016
, “
A Simple, Effective and Clinically Applicable Method to Compute Abdominal Aortic Aneurysm Wall Stress
,”
J. Mech. Behav. Biomed. Mater.
,
58
, pp.
139
148
.10.1016/j.jmbbm.2015.07.029
39.
Zambrano
,
B. A.
,
McLean
,
N. A.
,
Zhao
,
X.
,
Tan
,
J. L.
,
Zhong
,
L.
,
Figueroa
,
C. A.
,
Lee
,
L. C.
, and
Baek
,
S.
,
2018
, “
Image-Based Computational Assessment of Vascular Wall Mechanics and Hemodynamics in Pulmonary Arterial Hypertension Patients
,”
J. Biomech.
,
68
, pp.
84
92
.10.1016/j.jbiomech.2017.12.022
40.
Liu
,
M.
,
Liang
,
L.
, and
Sun
,
W.
,
2017
, “
A New Inverse Method for Estimation of In Vivo Mechanical Properties of the Aortic Wall
,”
J. Mech. Behav. Biomed. Mater.
,
72
, pp.
148
158
.10.1016/j.jmbbm.2017.05.001
41.
Bihari
,
P.
,
Shelke
,
A.
,
Nwe
,
T. H.
,
Mularczyk
,
M.
,
Nelson
,
K.
,
Schmandra
,
T.
,
Knez
,
P.
, and
Schmitz-Rixen
,
T.
,
2013
, “
Strain Measurement of Abdominal Aortic Aneurysm With Real-Time 3D Ultrasound Speckle Tracking
,”
Eur. J. Vasc. Endovasc. Surg.
,
45
(
4
), pp.
315
323
.10.1016/j.ejvs.2013.01.004
42.
Horny
,
L.
,
Adamek
,
T.
, and
Zitny
,
R.
,
2013
, “
Age-Related Changes in Longitudinal Prestress in Human Abdominal Aorta
,”
Arch Appl. Mech.
,
83
(
6
), pp.
875
888
.10.1007/s00419-012-0723-4
43.
Palombo
,
C.
, and
Kozakova
,
M.
,
2016
, “
Arterial Stiffness, Atherosclerosis and Cardiovascular Risk: Pathophysiologic Mechanisms and Emerging Clinical Indications
,”
Vasc. Pharmacol.
,
77
, pp.
1
7
.10.1016/j.vph.2015.11.083
44.
Kim
,
S. Y.
,
Yang
,
H. S.
,
Lee
,
Y. W.
,
Choe
,
Y. B.
, and
Ahn
,
K. J.
,
2015
, “
Evaluation of the Beta Stiffness Index and Carotid Intima-Media Thickness in Asian Patients With Psoriasis
,”
Angiology
,
66
(
9
), pp.
889
895
.10.1177/0003319714568790
45.
Vitarelli
,
A.
,
Conde
,
Y.
,
Cimino
,
E.
,
D'Angeli
,
I.
,
D'Orazio
,
S.
,
Stellato
,
S.
,
Padella
,
V.
, and
Caranci
,
F.
,
2006
, “
Aortic Wall Mechanics in the Marfan Syndrome Assessed by Transesophageal Tissue Doppler Echocardiography
,”
Am. J. Cardiol.
,
97
(
4
), pp.
571
577
.10.1016/j.amjcard.2005.09.089
46.
Mack
,
W. J.
,
Islam
,
T.
,
Lee
,
Z.
,
Selzer
,
R. H.
, and
Hodis
,
H. N.
,
2003
, “
Environmental Tobacco Smoke and Carotid Arterial Stiffness
,”
Prev. Med.
,
37
(
2
), pp.
148
154
.10.1016/S0091-7435(03)00097-5
47.
Vriz
,
O.
,
Driussi
,
C.
,
Bettio
,
M.
,
Ferrara
,
F.
,
D'Andrea
,
A.
, and
Bossone
,
E.
,
2013
, “
Aortic Root Dimensions and Stiffness in Healthy Subjects
,”
Am. J. Cardiol.
,
112
(
8
), pp.
1224
1229
.10.1016/j.amjcard.2013.05.068
48.
Wohlfahrt
,
P.
,
Krajčoviechová
,
A.
,
Seidlerová
,
J.
,
Mayer
,
O.
,
Bruthans
,
J.
,
Filipovský
,
J.
,
Laurent
,
S.
, and
Cífková
,
R.
,
2013
, “
Arterial Stiffness Parameters: How Do They Differ?
,”
Atherosclerosis
,
231
(
2
), pp.
359
364
.10.1016/j.atherosclerosis.2013.10.006
49.
Liao
,
J.
, and
Farmer
,
J.
,
2014
, “
Arterial Stiffness as a Risk Factor for Coronary Artery Disease
,”
Curr. Atheroscler. Rep.
,
16
(
2
), pp.
387
394
.10.1007/s11883-013-0387-8
50.
Amini Khoiy
,
K.
,
Abdulhai
,
S.
,
Glenn
,
I. C.
,
Ponsky
,
T. A.
, and
Amini
,
R.
,
2018
, “
Anisotropic and Nonlinear Biaxial Mechanical Response of Porcine Small Bowel Mesentery
,”
J. Mech. Behav. Biomed. Mater.
,
78
, pp.
154
163
.10.1016/j.jmbbm.2017.11.017
51.
Labrosse
,
M. R.
,
Beller
,
C. J.
,
Mesana
,
T.
, and
Veinot
,
J. P.
,
2009
, “
Mechanical Behavior of Human Aortas: Experiments, Material Constants and 3-D Finite Element Modeling Including Residual Stress
,”
ASME J. Biomech.
,
42
(
8
), pp.
996
1004
.10.1016/j.jbiomech.2009.02.009
52.
Macrae
,
R. A.
,
Miller
,
K.
, and
Doyle
,
B. J.
,
2016
, “
Methods in Mechanical Testing of Arterial Tissue: A Review
,”
Strain
,
52
(
5
), pp.
380
399
.10.1111/str.12183
53.
Sokolis
,
D. P.
,
Kritharis
,
E. P.
, and
Iliopoulos
,
D. C.
,
2012
, “
Effect of Layer Heterogeneity on the Biomechanical Properties of Ascending Thoracic Aortic Aneurysms
,”
Med. Biol. Eng. Comput.
,
50
(
12
), pp.
1227
1237
.10.1007/s11517-012-0949-x
54.
Iliopoulos
,
D. C.
,
Deveja
,
R. P.
,
Kritharis
,
E. P.
,
Perrea
,
D.
,
Sionis
,
G. D.
,
Toutouzas
,
K.
,
Stefanadis
,
C.
, and
Sokolis
,
D. P.
,
2009
, “
Regional and Directional Variations in the Mechanical Properties of Ascending Thoracic Aortic Aneurysms
,”
Med. Eng. Phys.
,
31
(
1
), pp.
1
9
.10.1016/j.medengphy.2008.03.002
55.
Fehervary
,
H.
,
Smoljkić
,
M.
,
Vander Sloten
,
J.
, and
Famaey
,
N.
,
2016
, “
Planar Biaxial Testing of Soft Biological Tissue Using Rakes: A Critical Analysis of Protocol and Fitting Process
,”
J. Mech. Behav. Biomed. Mater.
,
61
, pp.
135
151
.10.1016/j.jmbbm.2016.01.011
56.
Cardamone
,
L.
,
Valentín
,
A.
,
Eberth
,
J. F.
, and
Humphrey
,
J. D.
,
2009
, “
Origin of Axial Prestretch and Residual Stress in Arteries
,”
Biomech. Model. Mechanobiol.
,
8
(
6
), pp.
431
446
.10.1007/s10237-008-0146-x
57.
Sokolis
,
D. P.
,
Savva
,
G. D.
,
Papadodima
,
S. A.
, and
Kourkoulis
,
S. K.
,
2017
, “
Regional Distribution of Circumferential Residual Strains in the Human Aorta According to Age and Gender
,”
J. Mech. Behav. Biomed. Mater.
,
67
, pp.
87
100
.10.1016/j.jmbbm.2016.12.003
58.
Humphrey
,
J. D.
, and
Na
,
S.
,
2002
, “
Elastodynamics and Arterial Wall Stress
,”
Ann. Biomed. Eng.
,
30
(
4
), pp.
509
523
.10.1114/1.1467676
59.
Sokolis
,
D. P.
,
Bompas
,
A.
,
Papadodima
,
S. A.
, and
Kourkoulis
,
S. K.
,
2020
, “
Variation of Axial Residual Strains Along the Course and Circumference of Human Aorta Considering Age and Gender
,”
ASME J. Biomech. Eng.
,
142
(
2
), p.
021003
.10.1115/1.4043877
60.
Keyes
,
J. T.
,
Lockwood
,
D. R.
,
Utzinger
,
U.
,
Montilla
,
L. G.
,
Witte
,
R. S.
, and
Vande Geest
,
J. P.
,
2013
, “
Comparisons of Planar and Tubular Biaxial Tensile Testing Protocols of the Same Porcine Coronary Arteries
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1579
1591
.10.1007/s10439-012-0679-0
61.
Farzaneh
,
S.
,
Trabelsi
,
O.
, and
Avril
,
S.
,
2019
, “
Inverse Identification of Local Stiffness Across Ascending Thoracic Aortic Aneurysms
,”
Biomech. Model. Mechanobiol.
,
18
(
1
), pp.
137
153
.10.1007/s10237-018-1073-0
62.
Toungara
,
M.
,
Orgéas
,
L.
,
Geindreau
,
C.
, and
Bailly
,
L.
,
2013
, “
Micromechanical Modelling of the Arterial Wall: Influence of Mechanical Heterogeneities on the Wall Stress Distribution and the Peak Wall Stress
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
Suppl. 1
), pp.
22
24
.10.1080/10255842.2013.815929
63.
Kim
,
J.
,
Hong
,
J.-W.
, and
Baek
,
S.
,
2013
, “
Longitudinal Differences in the Mechanical Properties of the Thoracic Aorta Depend on Circumferential Regions
,”
J. Biomed. Mater. Res., Part A
,
101
(
5
), pp.
1525
1529
.10.1002/jbm.a.34445
64.
Kim
,
J.
, and
Baek
,
S.
,
2011
, “
Circumferential Variations of Mechanical Behavior of the Porcine Thoracic Aorta During the Inflation Test
,”
J. Biomech.
,
44
(
10
), pp.
1941
1947
.10.1016/j.jbiomech.2011.04.022
65.
Langewouters
,
G. J.
,
Wesseling
,
K. H.
, and
Goedhard
,
W. J. A.
,
1984
, “
The Static Elastic Properties of 45 Human Thoracic and 20 Abdominal Aortas In Vitro and the Parameters of a New Model
,”
J. Biomech.
,
17
(
6
), pp.
425
435
.10.1016/0021-9290(84)90034-4
66.
Chuong
,
C. J.
, and
Fung
,
Y. C.
,
1986
, “
On Residual Stresses in Arteries
,”
ASME J. Biomech. Eng.
,
108
(
2
), pp.
189
192
.10.1115/1.3138600
67.
Bersi
,
M. R.
,
Bellini
,
C.
,
Di Achille
,
P.
,
Humphrey
,
J. D.
,
Genovese
,
K.
, and
Avril
,
S.
,
2016
, “
Novel Methodology for Characterizing Regional Variations in the Material Properties of Murine Aortas
,”
ASME J. Biomech. Eng.
,
138
(
7
), p.
071005
.10.1115/1.4033674
68.
Tremblay
,
D.
,
Chagnon-Lessard
,
S.
,
Mirzaei
,
M.
,
Pelling
,
A. E.
, and
Godin
,
M.
,
2014
, “
A Microscale Anisotropic Biaxial Cell Stretching Device for Applications in Mechanobiology
,”
Biotechnol. Lett.
,
36
(
3
), pp.
657
665
.10.1007/s10529-013-1381-5
69.
Chagnon-Lessard
,
S.
,
Jean-Ruel
,
H.
,
Godin
,
M.
, and
Pelling
,
A. E.
,
2017
, “
Cellular Orientation is Guided by Strain Gradients
,”
Integr. Biol.
,
9
(
7
), pp.
607
618
.10.1039/C7IB00019G
70.
D'Amore
,
A.
,
Soares
,
J. S.
,
Stella
,
J. A.
,
Zhang
,
W.
,
Amoroso
,
N. J.
,
Mayer
,
J. E.
,
Wagner
,
W. R.
, and
Sacks
,
M. S.
,
2016
, “
Large Strain Stimulation Promotes Extracellular Matrix Production and Stiffness in an Elastomeric Scaffold Model
,”
J. Mech. Behav. Biomed. Mater.
,
62
, pp.
619
635
.10.1016/j.jmbbm.2016.05.005
71.
Kakisis
,
J. D.
,
Liapis
,
C. D.
, and
Sumpio
,
B. E.
,
2004
, “
Effects of Cyclic Strain on Vascular Cells
,”
Endothel. J. Endothel. Cell Res.
,
11
(
1
), pp.
17
28
.10.1080/10623320490432452
72.
Roccabianca
,
S.
,
Figueroa
,
C. A.
,
Tellides
,
G.
, and
Humphrey
,
J. D.
,
2014
, “
Quantification of Regional Differences in Aortic Stiffness in the Aging Human
,”
J. Mech. Behav. Biomed. Mater.
,
29
, pp.
618
634
.10.1016/j.jmbbm.2013.01.026
73.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
,
2010
, “
Modelling the Layer-Specific Three-Dimensional Residual Stresses in Arteries, With an Application to the Human Aorta
,”
J. R. Soc. Interface
, 7, pp. 787–799.10.1098/rsif.2009.0357
You do not currently have access to this content.