Abstract

It has been hypothesized that early and rapid filtration of blood from cerebrospinal fluid (CSF) in postsubarachnoid hemorrhage patients may reduce hospital stay and related adverse events. In this study, we formulated a subject-specific computational fluid dynamics (CFD) model to parametrically investigate the impact of a novel dual-lumen catheter-based CSF filtration system, the Neurapheresis™ system (Minnetronix Neuro, Inc., St. Paul, MN), on intrathecal CSF dynamics. The operating principle of this system is to remove CSF from one location along the spine (aspiration port), externally filter the CSF routing the retentate to a waste bag, and return permeate (uncontaminated CSF) to another location along the spine (return port). The CFD model allowed parametric simulation of how the Neurapheresis system impacts intrathecal CSF velocities and steady–steady streaming under various Neurapheresis flow settings ranging from 0.5 to 2.0 ml/min and with a constant retentate removal rate of 0.2 ml/min simulation of the Neurapheresis system were compared to a lumbar drain simulation with a typical CSF removal rate setting of 0.2 ml/min. Results showed that the Neurapheresis system at a maximum flow of 2.0 ml/min increased average steady streaming CSF velocity 2× in comparison to lumbar drain (0.190 ± 0.133 versus 0.093 ± 0.107 mm/s, respectively). This affect was localized to the region within the Neurapheresis flow loop. The mean velocities introduced by the flow loop were relatively small in comparison to normal cardiac-induced CSF velocities.

References

1.
Lantigua
,
H.
,
Ortega-Gutierrez
,
S.
,
Schmidt
,
J. M.
,
Lee
,
K.
,
Badjatia
,
N.
,
Agarwal
,
S.
,
Claassen
,
J.
,
Connolly
,
E. S.
, and
Mayer
,
S. A.
,
2015
, “
Subarachnoid Hemorrhage: Who Dies, and Why?
,”
Crit. Care
,
19
(
1
), p.
309
.10.1186/s13054-015-1036-0
2.
Lee
,
K. H.
,
Lukovits
,
T.
, and
Friedman
,
J. A.
,
2006
, “
‘Triple-H’ Therapy for Cerebral Vasospasm Following Subarachnoid Hemorrhage
,”
Neurocrit. Care
,
4
(
1
), pp.
68
76
.10.1385/NCC:4:1:068
3.
Bardutzky
,
J.
,
Witsch
,
J.
,
Juttler
,
E.
,
Schwab
,
S.
,
Vajkoczy
,
P.
, and
Wolf
,
S.
,
2011
, “
EARLYDRAIN-Outcome After Early Lumbar CSF-Drainage in Aneurysmal Subarachnoid Hemorrhage: Study Protocol for a Randomized Controlled Trial
,”
Trials
,
12
(
1
), p.
203
.10.1186/1745-6215-12-203
4.
Demirgil
,
B. T.
,
Tugcu
,
B.
,
Postalci
,
L.
,
Guclu
,
G.
,
Dalgic
,
A.
, and
Oral
,
Z.
,
2003
, “
Factors Leading to Hydrocephalus After Aneurysmal Subarachnoid Hemorrhage
,”
Minimally Invasive Neurosurg.
,
46
(
6
), pp.
344
348
.10.1055/s-2003-812500
5.
Graffradford
,
N. R.
,
Torner
,
J.
,
Adams
,
H. P.
, and
Kassell
,
N. F.
,
1989
, “
Factors Associated With Hydrocephalus After Subarachnoid Hemorrhage—A Report of the Cooperative Aneurysm Study
,”
Arch. Neurol.
,
46
(
7
), pp.
744
752
.10.1001/archneur.1989.00520430038014
6.
Hasan
,
D.
,
Vermeulen
,
M.
,
Wijdicks
,
E. F.
,
Hijdra
,
A.
, and
van Gijn
,
J.
,
1989
, “
Management Problems in Acute Hydrocephalus After Subarachnoid Hemorrhage
,”
Stroke
,
20
(
6
), pp.
747
753
.10.1161/01.STR.20.6.747
7.
Chen
,
S.
,
Luo
,
J. Q.
,
Reis
,
C.
,
Manaenko
,
A.
, and
Zhang
,
J. M.
,
2017
, “
Hydrocephalus After Subarachnoid Hemorrhage: Pathophysiology, Diagnosis, and Treatment
,”
Biomed Res. Int.
,
2017
, p.
8584753
.10.1155/2017/8584753
8.
Inagawa
,
T.
,
Kamiya
,
K.
, and
Matsuda
,
Y.
,
1991
, “
Effect of Continuous Cisternal Drainage on Cerebral Vasospasm
,”
Acta Neurochir.
,
112
(
1–2
), pp.
28
36
.10.1007/BF01402451
9.
Kawakami
,
Y.
, and
Shimamura
,
Y.
,
1987
, “
Cisternal Drainage After Early Operation of Ruptured Intracranial Aneurysm
,”
Neurosurgery
,
20
(
1
), pp.
8
14
.10.1227/00006123-198701000-00003
10.
Kodama
,
N.
,
Sasaki
,
T.
,
Kawakami
,
M.
,
Sato
,
M.
, and
Asari
,
J.
,
2000
, “
Cisternal Irrigation Therapy With Urokinase and Ascorbic Acid for Prevention of Vasospasm After Aneurysmal Subarachnoid Hemorrhage Outcome in 217 Patients
,”
Surgical Neurol.
,
53
(
2
), pp.
110
117
.10.1016/S0090-3019(99)00183-4
11.
Kodama
,
N.
,
Sasaki
,
T.
,
Yamanobe
,
K.
,
Sato
,
M.
, and
Kawakami
,
M.
,
1994
, “
Prevention of Cerebral Vasospasm—Cisternal Irrigation Therapy With Urokinase and Ascorbic-Acid
,”
New Trend in Management of Cerebro-Vascular Malformations
,
Springer
,
Vienna, Austria
, pp.
113
120
.10.1007/978-3-7091-9330-3
12.
Al-Tamimi
,
Y. Z.
,
Bhargava
,
D.
,
Feltbower
,
R. G.
,
Hall
,
G.
,
Goddard
,
A. J. P.
,
Quinn
,
A. C.
, and
Ross
,
S. A.
,
2012
, “
Lumbar Drainage of Cerebrospinal Fluid After Aneurysmal Subarachnoid Hemorrhage a Prospective, Randomized, Controlled Trial (LUMAS)
,”
Stroke
,
43
(
3
), pp.
677
682
.10.1161/STROKEAHA.111.625731
13.
Borkar
,
S. A.
,
2013
, “
Spinal Cerebrospinal Fluid Drainage for Prevention of Vasospasm in Aneurysmal Subarachnoid Haemorrhage: A Prospective Randomized Controlled Study
,”
Neurosurgery
,
60
(
Suppl. 1
), pp.
180
181
.10.1227/01.neu.0000432773.35977.df
14.
Hoekema
,
D.
,
Schmidt
,
R. H.
, and
Ross
,
I.
,
2007
, “
Lumbar Drainage for Subarachnoid Hemorrhage: Technical Considerations and Safety Analysis
,”
Neurocrit. Care
,
7
(
1
), pp.
3
9
.10.1007/s12028-007-0047-3
15.
Klimo
,
P.
,
Kestle
,
J. R. W.
,
MacDonald
,
J. D.
, and
Schmidt
,
R. H.
,
2004
, “
Marked Reduction of Cerebral Vasospasm With Lumbar Drainage of Cerebrospinal Fluid After Subarachnoid Hemorrhage
,”
J. Neurosurg.
,
100
(
2
), pp.
215
224
.10.3171/jns.2004.100.2.0215
16.
Kwon
,
O. Y.
,
Kim
,
Y. J.
,
Kim
,
Y. J.
,
Cho
,
C. S.
,
Lee
,
S. K.
, and
Cho
,
M. K.
,
2008
, “
The Utility and Benefits of External Lumbar CSF Drainage After Endovascular Coiling on Aneurysmal Subarachnoid Hemorrhage
,”
J. Korean Neurosurg. Soc.
,
43
(
6
), pp.
281
287
.10.3340/jkns.2008.43.6.281
17.
Maeda
,
Y.
,
Shirao
,
S.
,
Yoneda
,
H.
,
Ishihara
,
H.
,
Shinoyama
,
M.
,
Oka
,
F.
,
Sadahiro
,
H.
,
Ueda
,
K.
,
Sano
,
Y.
,
Kudomi
,
S.
,
Hayashi
,
Y.
,
Shigeeda
,
T.
,
Nakano
,
K.
,
Koizumi
,
H.
,
Nomura
,
S.
,
Fujii
,
M.
,
Nomura
,
S.
, and
Suzuki
,
M.
,
2013
, “
Comparison of Lumbar Drainage and External Ventricular Drainage for Clearance of Subarachnoid Clots After Guglielmi Detachable Coil Embolization for Aneurysmal Subarachnoid Hemorrhage
,”
Clin. Neurol. Neurosurg.
,
115
(
7
), pp.
965
970
.10.1016/j.clineuro.2012.10.001
18.
Ormond
,
D. R.
,
Dressler
,
A.
,
Kim
,
S.
,
Ronecker
,
J.
, and
Murali
,
R.
,
2013
, “
Lumbar Drains May Reduce the Need for Permanent CSF Diversion in Spontaneous Subarachnoid Haemorrhage
,”
British J. Neurosurg.
,
27
(
2
), pp.
171
174
.10.3109/02688697.2012.743971
19.
Park
,
S.
,
Yang
,
N.
, and
Seo
,
E.
,
2015
, “
The Effectiveness of Lumbar Cerebrospinal Fluid Drainage to Reduce the Cerebral Vasospasm After Surgical Clipping for Aneurysmal Subarachnoid Hemorrhage
,”
J. Korean Neurosurg. Soc.
,
57
(
3
), pp.
167
173
.10.3340/jkns.2015.57.3.167
20.
Hirashima
,
Y.
,
Kurimoto
,
M.
,
Hayashi
,
N.
,
Umemura
,
K.
,
Hori
,
E.
,
Origasa
,
H.
, and
Endo
,
S.
,
2005
, “
Duration of Cerebrospinal Fluid Drainage in Patients With Aneurysmal Subarachnoid Hemorrhage for Prevention of Symptomatic Vasospasm and Late Hydrocephalus
,”
Neurol. Med.-Chir.
,
45
(
4
), pp.
177
182
.10.2176/nmc.45.177
21.
Kasuya
,
H.
,
Shimizu
,
T.
, and
Kagawa
,
M.
,
1991
, “
The Effect of Continuous Drainage of Cerebrospinal-Fluid in Patients With Subarachnoid Hemorrhage—A Retrospective Analysis of 108 Patients
,”
Neurosurgery
,
28
(
1
), pp.
56
59
.10.1227/00006123-199101000-00009
22.
Findlay
,
J. M.
,
Kassell
,
N. F.
,
Weir
,
B. K. A.
,
Haley
,
E. C.
,
Kongable
,
G.
,
Germanson
,
T.
,
Truskowski
,
L.
,
Alves
,
W. M.
,
Holness
,
R. O.
,
Knuckey
,
N. W.
,
Yonas
,
H.
,
Steinberg
,
G. K.
,
West
,
M.
,
Winn
,
H. R.
, and
Ferguson
,
G.
,
1995
, “
A Randomized Trial of Intraoperative, Intracisternal Tissue-Plasminogen Activator for the Prevention of Vasospasm
,”
Neurosurgery
,
37
(
1
), pp.
168
176
.10.1227/00006123-199507000-00041
23.
Kramer
,
A. H.
, and
Fletcher
,
J. J.
,
2011
, “
Locally-Administered Intrathecal Thrombolytics Following Aneurysmal Subarachnoid Hemorrhage: A Systematic Review and Meta-Analysis
,”
Neurocrit. Care
,
14
(
3
), pp.
489
499
.10.1007/s12028-010-9429-z
24.
Mizoi
,
K.
,
Yoshimoto
,
T.
,
Takahashi
,
A.
,
Fujiwara
,
S.
,
Koshu
,
K.
, and
Sugawara
,
T.
,
1993
, “
Prospective-Study on the Prevention of Cerebral Vasospasm by Intrathecal Fibrinolytic Therapy With Tissue-Type Plasminogen-Activator
,”
J. Neurosurg.
,
78
(
3
), pp.
430
437
.10.3171/jns.1993.78.3.0430
25.
Seifert
,
V.
,
Stolke
,
D.
,
Zimmermann
,
M.
, and
Feldges
,
A.
,
1994
, “
Prevention of Delayed Ischemic Deficits After Aneurysmal Subarachnoid Hemorrhage by Intrathecal Bolus Injection of Tissue-Plasminogen Activator (RTPA)—A Prospective-Study
,”
Acta Neurochir.
,
128
(
1–4
), pp.
137
143
.10.1007/BF01400664
26.
Hanggi
,
D.
,
Liersch
,
J.
,
Turowski
,
B.
,
Yong
,
M.
, and
Steiger
,
H. J.
,
2008
, “
The Effect of Lumboventricular Lavage and Simultaneous Low-Frequency Head-Motion Therapy After Severe Subarachnoid Hemorrhage: Results of a Single Center Prospective Phase II Trial
,”
J. Neurosurg.
,
108
(
6
), pp.
1192
1199
.10.3171/JNS/2008/108/6/1192
27.
Kawamoto
,
S.
,
Tsutsumi
,
K.
,
Yoshikawa
,
G.
,
Shinozaki
,
M. H.
,
Yako
,
K.
,
Nagata
,
K.
, and
Ueki
,
K.
,
2004
, “
Effectiveness of the Head-Shaking Method Combined With Cisternal Irrigation With Urokinase in Preventing Cerebral Vasospasm After Subarachnoid Hemorrhage
,”
J. Neurosurg.
,
100
(
2
), pp.
236
243
.10.3171/jns.2004.100.2.0236
28.
Kertzscher
,
U.
,
Schneider
,
T.
,
Goubergrits
,
L.
,
Affeld
,
K.
,
Hanggi
,
D.
, and
Spuler
,
A.
,
2012
, “
In Vitro Study of Cerebrospinal Fluid Dynamics in a Shaken Basal Cistern After Experimental Subarachnoid Hemorrhage
,”
Plos One
,
7
(
8
), p.
e41677
.10.1371/journal.pone.0041677
29.
Tangen
,
K.
,
Narasimhan
,
N. S.
,
Sierzega
,
K.
,
Preden
,
T.
,
Alaraj
,
A.
, and
Linninger
,
A. A.
,
2016
, “
Clearance of Subarachnoid Hemorrhage From the Cerebrospinal Fluid in Computational and In Vivo Models
,”
Ann. Biomed. Eng.
,
44
(
12
), pp.
3478
3494
.10.1007/s10439-016-1681-8
30.
Blackburn
,
S. L.
,
Swisher
,
C. B.
,
Grande
,
A. W.
,
Rubi
,
A.
,
Verbick
,
L. Z.
,
McCabe
,
A.
, and
Lad
,
S. P.
,
2018
, “
Novel Dual Lumen Catheter and Filtration Device for Removal of Subarachnoid Hemorrhage: First Case Report
,”
Oper. Neurosurg. (Hagerstown)
,
16
(
5
), pp.
E148
E153
.10.1093/ons/opy151
31.
Messer
,
J.
,
2018
, “
Extracorporeal Filtration of Subarachnoid Hemorrhage Via Spinal Catheter (PILLAR)
,”
Minnetronix, U.S. National Library of Medicine
,
Bethesda, MD
,
assessed Aug. 19, 2016
, https://clinicaltrials.gov/ct2/show/NCT02872636.
32.
Smilnak
,
G. J.
,
Charalambous
,
L. T.
,
Cutshaw
,
D.
,
Premji
,
A. M.
,
Giamberardino
,
C. D.
,
Ballard
,
C. G.
,
Bartuska
,
A. P.
,
Ejikeme
,
T. U.
,
Sheng
,
H.
,
Verbick
,
L. Z.
,
Hedstrom
,
B. A.
,
Pagadala
,
P. C.
,
McCabe
,
A. R.
,
Perfect
,
J. R.
, and
Lad
,
S. P.
,
2018
, “
Novel Treatment of Cryptococcal Meningitis Via Neurapheresis Therapy
,”
J. Infect. Dis.
,
218
(
7
), pp.
1147
1154
.10.1093/infdis/jiy286
33.
Khani
,
M.
,
Xing
,
T.
,
Gibbs
,
C.
,
Oshinski
,
J. N.
,
Stewart
,
G. R.
,
Zeller
,
J. R.
, and
Martin
,
B. A.
,
2017
, “
Nonuniform Moving Boundary Method for Computational Fluid Dynamics Simulation of Intrathecal Cerebrospinal Flow Distribution in a Cynomolgus Monkey
,”
ASME J. Biomech. Eng.
,
139
(
8
), p.
081005
.10.1115/1.4036608
34.
Sass
,
L. R.
,
Khani
,
M.
,
Natividad
,
G. C.
,
Tubbs
,
R. S.
,
Baledent
,
O.
, and
Martin
,
B. A.
,
2017
, “
A 3D Subject-Specific Model of the Spinal Subarachnoid Space With Anatomically Realistic Ventral and Dorsal Spinal Cord Nerve Rootlets
,”
Fluids Barriers CNS
,
14
(
1
), p.
36
.10.1186/s12987-017-0085-y
35.
Khani
,
M.
,
Sass
,
L.
,
Xing
,
T.
,
Sharp
,
M. K.
,
Balédent
,
O.
, and
Martin
,
B.
,
2018
, “
Anthropomorphic Model of Intrathecal Cerebrospinal Fluid Dynamics Within the Spinal Subarachnoid Space: Spinal Cord Nerve Roots Increase Steady-Streaming
,”
ASME J. Biomech. Eng.
,
140
(
8
), p.
081012
.10.1115/1.4040401
36.
Khani
,
M.
,
Lawrence
,
B. J.
,
Sass
,
L. R.
,
Gibbs
,
C. P.
,
Pluid
,
J. J.
,
Oshinski
,
J. N.
,
Stewart
,
G. R.
,
Zeller
,
J. R.
, and
Martin
,
B. A.
,
2019
, “
Characterization of Intrathecal Cerebrospinal Fluid Geometry and Dynamics in Cynomolgus Monkeys (Macaca Fascicularis) by Magnetic Resonance Imaging
,”
PLoS One
,
14
(
2
), p.
e0212239
.10.1371/journal.pone.0212239
37.
Hall
,
J. E.
, and
Guyton
,
A. C.
,
2011
,
Guyton and Hall Textbook of Medical Physiology
,
Saunders/Elsevier
,
Philadelphia, PA
.
38.
Gupta
,
A.
,
Church
,
D.
,
Barnes
,
D.
, and
Hassan
,
A.
,
2008
, “
Cut to the Chase: On the Need for Genotype-Specific Soft Tissue Sarcoma Trials
,”
Ann. Oncol.
,
20
(
3
), pp.
399
400
.10.1093/annonc/mdp021
39.
Gupta
,
S.
,
Soellinger
,
M.
,
Grzybowski
,
D. M.
,
Boesiger
,
P.
,
Biddiscombe
,
J.
,
Poulikakos
,
D.
, and
Kurtcuoglu
,
V.
,
2010
, “
Cerebrospinal Fluid Dynamics in the Human Cranial Subarachnoid Space: An Overlooked Mediator of Cerebral Disease—Part I: Computational Model
,”
J. R. Soc. Interface
,
7
(
49
), pp.
1195
1204
.10.1098/rsif.2010.0033
40.
Sanchez
,
A. L.
,
Martinez-Bazan
,
C.
,
Gutierrez-Montes
,
C.
,
Criado-Hidalgo
,
E.
,
Pawlak
,
G.
,
Bradley
,
W.
,
Haughton
,
V.
, and
Lasheras
,
J. C.
,
2018
, “
On the Bulk Motion of the Cerebrospinal Fluid in the Spinal Canal
,”
J. Fluid Mech.
,
841
, pp.
203
227
.10.1017/jfm.2018.67
41.
Bapuraj
,
J. R.
,
Londy
,
F. J.
,
Delavari
,
N.
,
Maher
,
C. O.
,
Garton
,
H. J. L.
,
Martin
,
B. A.
,
Muraszko
,
K. M.
,
Ibrahim
,
E. H.
, and
Quint
,
D. J.
,
2016
, “
Cerebrospinal Fluid Velocity Amplitudes Within the Cerebral Aqueduct in Healthy Children and Patients With Chiari I Malformation
,”
J. Magn. Reson. Imaging
,
44
(
2
), pp.
463
470
.10.1002/jmri.25160
42.
Bunck
,
A. C.
,
Kroger
,
J. R.
,
Juttner
,
A.
,
Brentrup
,
A.
,
Fiedler
,
B.
,
Schaarschmidt
,
F.
,
Crelier
,
G. R.
,
Schwindt
,
W.
,
Heindel
,
W.
,
Niederstadt
,
T.
, and
Maintz
,
D.
,
2011
, “
Magnetic Resonance 4D Flow Characteristics of Cerebrospinal Fluid at the Craniocervical Junction and the Cervical Spinal Canal
,”
Eur. Radiol.
,
21
(
8
), pp.
1788
1796
.10.1007/s00330-011-2105-7
43.
Bunck
,
A. C.
,
Kroeger
,
J. R.
,
Juettner
,
A.
,
Brentrup
,
A.
,
Fiedler
,
B.
,
Crelier
,
G. R.
,
Martin
,
B. A.
,
Heindel
,
W.
,
Maintz
,
D.
,
Schwindt
,
W.
, and
Niederstadt
,
T.
,
2012
, “
Magnetic Resonance 4D Flow Analysis of Cerebrospinal Fluid Dynamics in Chiari I Malformation With and Without Syringomyelia
,”
Eur. Radiol.
,
22
(
9
), pp.
1860
1870
.10.1007/s00330-012-2457-7
44.
Dolar
,
M. T.
,
Haughton
,
V. M.
,
Iskandar
,
B. J.
, and
Quigley
,
M.
,
2004
, “
Effect of Craniocervical Decompression on Peak CSF Velocities in Symptomatic Patients With Chiari I Malformation
,”
AJNR Am. J. Neuroradiol.
,
25
(
1
), pp.
142
145
.
45.
Quigley
,
M. F.
,
Iskandar
,
B.
,
Quigley
,
M. E.
,
Nicosia
,
M.
, and
Haughton
,
V.
,
2004
, “
Cerebrospinal Fluid Flow in Foramen Magnum: Temporal and Spatial Patterns at MR Imaging in Volunteers and in Patients With Chiari I Malformation
,”
Radiology
,
232
(
1
), pp.
229
236
.10.1148/radiol.2321030666
46.
Messer
,
J.
,
2018
, “
FILtration of Subarachnoid Hemorrhage Via SpinaL CAtheteR Extension (PILLAR-XT)
,”
Minnetronix, U.S. National Library of Medicine
,
Bethesda, MD
,
assessed July 31, 2018
, https://clinicaltrials.gov/ct2/show/record/NCT03607825.
47.
Heidari Pahlavian
,
S.
,
Yiallourou
,
T.
,
Tubbs
,
R. S.
,
Bunck
,
A. C.
,
Loth
,
F.
,
Goodin
,
M.
,
Raisee
,
M.
, and
Martin
,
B. A.
,
2014
, “
The Impact of Spinal Cord Nerve Roots and Denticulate Ligaments on Cerebrospinal Fluid Dynamics in the Cervical Spine
,”
PLoS One
,
9
(
4
), p.
e91888
.10.1371/journal.pone.0091888
48.
Jain
,
K.
,
Ringstad
,
G.
,
Eide
,
P. K.
, and
Mardal
,
K. A.
,
2016
, “
Direct Numerical Simulation of Transitional Hydrodynamics of the Cerebrospinal Fluid in Chiari I Malformation: The Role of Cranio-Vertebral Junction
,”
Int. J. Numer. Method Biomed. Eng.
,
33
(
9
), p.
e2853
.10.1002/cnm.2853
49.
Jain
,
K.
, and
Universi—Universitätsverlag Siegen
,
2016
, “Transition to Turbulence in Physiological Flows: Direct Numerical Simulation of Hemodynamics in Intracranial Aneurysms and Cerebrospinal Fluid Hydrodynamics in the Spinal Canal,” Universi—Universitätsverlag Siegen, Siegen, Germany.
50.
Tangen
,
K. M.
,
Hsu
,
Y.
,
Zhu
,
D. C.
, and
Linninger
,
A. A.
,
2015
, “
CNS Wide Simulation of Flow Resistance and Drug Transport Due to Spinal Microanatomy
,”
J. Biomech.
,
48
(
10
), pp.
2144
2154
.10.1016/j.jbiomech.2015.02.018
51.
Haga
,
P. T.
,
Pizzichelli
,
G.
,
Mortensen
,
M.
,
Kuchta
,
M.
,
Pahlavian
,
S. H.
,
Sinibaldi
,
E.
,
Martin
,
B. A.
, and
Mardal
,
K. A.
,
2017
, “
A Numerical Investigation of Intrathecal Isobaric Drug Dispersion Within the Cervical Subarachnoid Space
,”
PLoS One
,
12
(
3
), p.
e0173680
.10.1371/journal.pone.0173680
52.
Dreha-Kulaczewski
,
S.
,
Joseph
,
A. A.
,
Merboldt
,
K.-D.
,
Ludwig
,
H.-C.
,
Gärtner
,
J.
, and
Frahm
,
J.
,
2015
, “
Inspiration is the Major Regulator of Human CSF Flow
,”
J. Neurosci.
,
35
(
6
), pp.
2485
2491
.10.1523/JNEUROSCI.3246-14.2015
53.
Takizawa
,
K.
,
Matsumae
,
M.
,
Sunohara
,
S.
,
Yatsushiro
,
S.
, and
Kuroda
,
K.
,
2017
, “
Characterization of Cardiac- and Respiratory-Driven Cerebrospinal Fluid Motion Based on Asynchronous Phase-Contrast Magnetic Resonance Imaging in Volunteers
,”
Fluids Barriers CNS
,
14
(
1
), p.
25
.10.1186/s12987-017-0074-1
54.
Yildiz
,
S.
,
Thyagaraj
,
S.
,
Jin
,
N.
,
Zhong
,
X.
,
Heidari Pahlavian
,
S.
,
Martin
,
B. A.
,
Loth
,
F.
,
Oshinski
,
J.
, and
Sabra
,
K. G.
,
2017
, “
Quantifying the Influence of Respiration and Cardiac Pulsations on Cerebrospinal Fluid Dynamics Using Real-Time Phase-Contrast MRI
,”
J. Magn. Reson. Imaging
,
46
(
2
), pp.
431
439
.10.1002/jmri.25591
You do not currently have access to this content.