Abstract

Time-dependent arterial wall property is an important but difficult topic in vascular mechanics. Hysteresis, which appears during the measurement of arterial pressure–diameter relationship through a cardiac cycle, has been used to indicate time-dependent mechanics of arteries. However, the cause–effect relationship between viscoelastic (VE) properties of the arterial wall and hemodynamics, particularly the viscous contribution to hemodynamics, remains challenging. Herein, we show direct comparisons between elastic (E) (loss/storage < 0.1) and highly viscoelastic (loss/storage > 0.45) conduit structures with arterial-like compliance, in terms of their capability of altering pulsatile flow, wall shear, and energy level. Conduits were made from varying ratio of vinyl- and methyl-terminated poly(dimethylsiloxane) and were fit in a mimetic circulatory system measuring volumetric flow, pressure, and strain. Results indicated that when compared to elastic conduits, viscoelastic conduits attenuated lumen distension waveforms, producing an average of 11% greater cross-sectional area throughout a mimetic cardiac cycle. In response to such changes in lumen diameter strain, pressure and volumetric flow waves in viscoelastic conduits decreased by 3.9% and 6%, respectively, in the peak-to-peak amplitude. Importantly, the pulsatile waveforms for both diameter strain and volumetric flow demonstrated greater temporal alignment in viscoelastic conduits due to pulsation attenuation, resulting in 25% decrease in the oscillation of wall shear stress (WSS). We hope these findings may be used to further examine time-dependent arterial properties in disease prognosis and progression, as well as their use in vascular graft design.

References

References
1.
Liu
,
A.
,
Tian
,
L.
,
Golob
,
M.
,
Eickhoff
,
J. C.
,
Boston
,
M.
, and
Chesler
,
N. C.
,
2015
, “
17β-Estradiol Attenuates Conduit Pulmonary Artery Mechanical Property Changes With Pulmonary Arterial Hypertension
,”
Hypertension
,
66
(
5
), pp.
1082
1088
.10.1161/HYPERTENSIONAHA.115.05843
2.
Wang
,
Z.
,
Lakes
,
R. S.
,
Golob
,
M.
,
Eickhoff
,
J. C.
, and
Chesler
,
N. C.
,
2013
, “
Changes in Large Pulmonary Arterial Viscoelasticity in Chronic Pulmonary Hypertension
,”
PLoS One
,
8
(
11
), p.
e78569
.10.1371/journal.pone.0078569
3.
Zhao
,
X.
,
2014
, “
Multi-Scale Multi-Mechanism Design of Tough Hydrogels: Building Dissipation Into Stretchy Networks
,”
Soft Matter.
,
10
(
5
), pp.
672
687
.10.1039/C3SM52272E
4.
Zhao
,
Y.
,
Nakajima
,
T.
,
Yang
,
J. J.
,
Kurokawa
,
T.
,
Liu
,
J.
,
Lu
,
J.
,
Mizumoto
,
S.
,
Sugahara
,
K.
,
Kitamura
,
N.
,
Yasuda
,
K.
,
Daniels
,
A. U. D.
, and
Gong
,
J. P.
,
2014
, “
Proteoglycans and Glycosaminoglycans Improve Toughness of Biocompatible Double Network Hydrogels
,”
Adv Mater.
,
26
(
3
), pp.
436
442
.10.1002/adma.201303387
5.
Nagiah
,
N.
,
Johnson
,
R.
,
Anderson
,
R.
,
Elliott
,
W.
, and
Tan
,
W.
,
2015
, “
Highly Compliant Vascular Grafts With Gelatin-Sheathed Coaxially Structured Nanofibers
,”
Langmuir
,
31
(
47
), pp.
12993
13002
.10.1021/acs.langmuir.5b03177
6.
Neufurth
,
M.
,
Wang
,
X.
,
Tolba
,
E.
,
Dorweiler
,
B.
,
Schröder
,
H. C.
,
Link
,
T.
,
Diehl-Seifert
,
B.
, and
Müller
,
W. E. G.
,
2015
, “
Modular Small Diameter Vascular Grafts With Bioactive Functionalities. Zhao F, Editor
,”
PLoS One
,
10
(
7
), p.
e0133632
.10.1371/journal.pone.0133632
7.
Beaussier
,
H.
,
Naggara
,
O.
,
Calvet
,
D.
,
Joannides
,
R.
,
Guegan-Massardier
,
E.
,
Gerardin
,
E.
,
Iacob
,
M.
,
LaLoux
,
B.
,
Bozec
,
E.
,
Bellien
,
J.
,
Touze
,
E.
,
Masson
,
I.
,
Thuillez
,
C.
,
Oppenheim
,
C.
,
Boutouyrie
,
P.
, and
Laurent
,
S.
,
2011
, “
Mechanical and Structural Characteristics of Carotid Plaques by Combined Analysis With Echotracking System and MR Imaging
,”
JACC Cardiovasc. Imaging
,
4
(
5
), pp.
468
477
.10.1016/j.jcmg.2011.01.017
8.
Huynh
,
J.
,
Nishimura
,
N.
,
Rana
,
K.
,
Peloquin
,
J. M.
,
Califano
,
J. P.
,
Montague
,
C. R.
,
King
,
M. R.
,
Schaffer
,
C. B.
, and
Reinhart-King
,
C. A.
,
2011
, “
Age-Related Intimal Stiffening Enhances Endothelial Permeability and Leukocyte Transmigration
,”
Sci. Transl. Med.
,
3
(
112
), p.
112ra122
.10.1126/scitranslmed.3002761
9.
Bia
,
D.
,
Zócalo
,
Y.
,
Pessana
,
F.
,
Armentano
,
R.
,
Pérez
,
H.
,
Cabrera
,
E.
,
Saldías
,
M.
, and
Alvarez
,
I.
,
2006
, “
Viscoelastic and Functional Similarities Between Native Femoral Arteries and Fresh or Cryopreserved Arterial and Venous Homografts
,”
Rev. Esp. Cardiol. Engl. Ed.
,
59
(
7
), pp.
679
687
.10.1157/13091369
10.
Deutsch
,
M.
,
Meinhart
,
J.
,
Zilla
,
P.
,
Howanietz
,
N.
,
Gorlitzer
,
M.
,
Froeschl
,
A.
,
Stuempflen
,
A.
,
Bezuidenhout
,
D.
, and
Grabenwoeger
,
M.
,
2009
, “
Long-Term Experience in Autologous In Vitro Endothelialization of Infrainguinal ePTFE Grafts
,”
J. Vasc. Surg.
,
49
(
2
), pp.
352
362
.10.1016/j.jvs.2008.08.101
11.
Owens
,
C. D.
,
2010
, “
Adaptive Changes in Autogenous Vein Grafts for Arterial Reconstruction: Clinical Implications
,”
J. Vasc. Surg.
,
51
(
3
), pp.
736
746
.10.1016/j.jvs.2009.07.102
12.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2004
, “
Comparison of a Multi-Layer Structural Model for Arterial Walls With a Fung-Type Model, and Issues of Material Stability
,”
ASME J. Biomech. Eng.
,
126
(
2
), p.
264
.10.1115/1.1695572
13.
Holzapfel
,
G. A.
,
Sommer
,
G.
,
Gasser
,
C. T.
, and
Regitnig
,
P.
,
2005
, “
Determination of Layer-Specific Mechanical Properties of Human Coronary Arteries With Nonatherosclerotic Intimal Thickening and Related Constitutive Modeling
,”
AJP Heart Circ. Physiol.
,
289
(
5
), pp.
H2048
H2058
.10.1152/ajpheart.00934.2004
14.
Wagenseil
,
J. E.
, and
Mecham
,
R. P.
,
2009
, “
Vascular Extracellular Matrix and Arterial Mechanics
,”
Physiol. Rev.
,
89
(
3
), pp.
957
989
.10.1152/physrev.00041.2008
15.
Hunter
,
K. S.
,
Albietz
,
J. A.
,
Lee
,
P.-F.
,
Lanning
,
C. J.
,
Lammers
,
S. R.
,
Hofmeister
,
S. H.
,
Kao
,
P. H.
,
Qi
,
H. J.
,
Stenmark
,
K. R.
, and
Shandas
,
R.
,
2010
, “
In Vivo Measurement of Proximal Pulmonary Artery Elastic Modulus in the Neonatal Calf Model of Pulmonary Hypertension: Development and Ex Vivo Validation
,”
J. Appl. Physiol.
,
108
(
4
), pp.
968
975
.10.1152/japplphysiol.01173.2009
16.
O'Rourke
,
M. F.
,
Nichols
,
W. W.
, and
Vlachopoulos
,
C.
,
2011
,
McDonald's Blood Flow in Arteries, Sixth Edition: Theoretical, Experimental and Clinical Principles
, 6th ed.,
CRC Press
,
London
, p.
768
.
17.
Armentano
,
R. L.
,
Cymberknop
,
L. J.
,
S.
,
Bagnasco
,
D. M.
,
Ballarin
,
F.
,
Balay
,
G.
, and
Negreira
,
C.
,
2014
, “
Similarities of Arterial Collagen Pressure-Diameter Relationship in Ovine Femoral Arteries and PLLA Vascular Grafts
,”
36th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society
(
EMBC
), Chicago, IL, Aug. 26–30, pp.
2302
2305
.10.1109/EMBC.2014.6944080
18.
Giannattasio
,
C.
,
Salvi
,
P.
,
Valbusa
,
F.
,
Kearney-Schwartz
,
A.
,
Capra
,
A.
,
Amigoni
,
M.
,
Failla
,
M.
,
Boffi
,
L.
,
Madotto
,
F.
,
Benetos
,
A.
, and
Mancia
,
G.
,
2008
, “
Simultaneous Measurement of Beat-to-Beat Carotid Diameter and Pressure Changes to Assess Arterial Mechanical Properties
,”
Hypertension
,
52
(
5
), pp.
896
902
.10.1161/HYPERTENSIONAHA.108.116509
19.
Wanga
,
X.-F.
,
Fullana
,
J.-M.
,
Lagree
,
P.-Y.
, and
Armentano
,
R. L.
,
2013
, “
Effect of Viscoelasticity of Arterial Wall on Pulse Wave: A Comparative Study on Ovine
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
Suppl. 1
), p.
25
.10.1080/10255842.2013.815935
20.
Alastruey
,
J.
,
Khir
,
A. W.
,
Matthys
,
K. S.
,
Segers
,
P.
,
Sherwin
,
S. J.
,
Verdonck
,
P. R.
,
Parker
,
K. H.
, and
Peiró
,
J.
,
2011
, “
Pulse Wave Propagation in a Model Human Arterial Network: Assessment of 1–D Visco-Elastic Simulations Against In Vitro Measurements
,”
J. Biomech.
,
44
(
12
), pp.
2250
2258
.10.1016/j.jbiomech.2011.05.041
21.
Alastruey
,
J.
,
Passerini
,
T.
,
Formaggia
,
L.
, and
Peiró
,
J.
,
2012
, “
Physical Determining Factors of the Arterial Pulse Waveform: Theoretical Analysis and Calculation Using the 1-D Formulation
,”
J. Eng. Math.
,
77
(
1
), pp.
19
37
.10.1007/s10665-012-9555-z
22.
Bessems
,
D.
,
Giannopapa
,
C. G.
,
Rutten
,
M. C. M.
, and
van de Vosse
,
F. N.
,
2008
, “
Experimental Validation of a Time-Domain-Based Wave Propagation Model of Blood Flow in Viscoelastic Vessels
,”
J. Biomech. Kidlington
,
41
(
2
), pp.
284
91
.10.1016/j.jbiomech.2007.09.014
23.
Raghu
,
R.
,
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
, and
Taylor
,
C. A.
,
2011
, “
Comparative Study of Viscoelastic Arterial Wall Models in Nonlinear One-Dimensional Finite Element Simulations of Blood Flow
,”
ASME J. Biomech. Eng.
,
133
(
8
), p.
081003
.10.1115/1.4004532
24.
Wang
,
X.-F.
,
Nishi
,
S.
,
Matsukawa
,
M.
,
Ghigo
,
A.
,
Lagrée
,
P.-Y.
, and
Fullana
,
J.-M.
,
2016
, “
Fluid Friction and Wall Viscosity of the 1D Blood Flow Model
,”
J. Biomech.
,
49
(
4
), pp.
565
571
.10.1016/j.jbiomech.2016.01.010
25.
Bergel
,
D. H.
,
1961
, “
The Dynamic Elastic Properties of the Arterial Wall
,”
J. Physiol.
,
156
(
3
), pp.
458
469
.10.1113/jphysiol.1961.sp006687
26.
Chien
,
S.
,
2007
, “
Mechanotransduction and Endothelial Cell Homeostasis: The Wisdom of the Cell
,”
AJP Heart Circ. Physiol.
,
292
(
3
), pp.
H1209
H1224
.10.1152/ajpheart.01047.2006
27.
Chiu
,
J.-J.
, and
Chien
,
S.
,
2011
, “
Effects of Disturbed Flow on Vascular Endothelium: Pathophysiological Basis and Clinical Perspectives
,”
Physiol. Rev.
,
91
(
1
), pp.
327
387
.10.1152/physrev.00047.2009
28.
Elliott
,
W. H.
,
Tan
,
Y.
,
Li
,
M.
, and
Tan
,
W.
,
2015
, “
High Pulsatility Flow Promotes Vascular Fibrosis by Triggering Endothelial EndMT and Fibroblast Activation
,”
Cell. Mol. Bioeng.
,
8
(
2
), pp.
285
295
.10.1007/s12195-015-0386-7
29.
Scott
,
D.
,
Tan
,
Y.
,
Shandas
,
R.
,
Stenmark
,
K. R.
, and
Tan
,
W.
,
2013
, “
High Pulsatility Flow Stimulates Smooth Muscle Cell Hypertrophy and Contractile Protein Expression
,”
AJP Lung Cell. Mol. Physiol.
,
304
(
1
), pp.
L70
L81
.10.1152/ajplung.00342.2012
30.
Mrozek
,
R. A.
,
Cole
,
P. J.
,
Otim
,
K. J.
,
Shull
,
K. R.
, and
Lenhart
,
J. L.
,
2011
, “
Influence of Solvent Size on the Mechanical Properties and Rheology of Polydimethylsiloxane-Based Polymeric Gels
,”
Polymer
,
52
(
15
), pp.
3422
3430
.10.1016/j.polymer.2011.05.021
31.
Kalcioglu
,
Z. I.
,
Mrozek
,
R. A.
,
Mahmoodian
,
R.
,
VanLandingham
,
M. R.
,
Lenhart
,
J. L.
, and
Van Vliet
,
K. J.
,
2013
, “
Tunable Mechanical Behavior of Synthetic Organogels as Biofidelic Tissue Simulants
,”
J. Biomech.
,
46
(
9
), pp.
1583
1591
.10.1016/j.jbiomech.2013.03.011
32.
Learoyd
,
B. M.
, and
Taylor
,
M. G.
,
1966
, “
Alterations With Age in the Viscoelastic Properties of Human Arterial Walls
,”
Circ. Res.
,
18
(
3
), pp.
278
292
.10.1161/01.RES.18.3.278
33.
Grant
,
C. A.
, and
Twigg
,
P. C.
,
2013
, “
Pseudostatic and Dynamic Nanomechanics of the Tunica Adventitia in Elastic Arteries Using Atomic Force Microscopy
,”
ACS Nano.
,
7
(
1
), pp.
456
464
.10.1021/nn304508x
34.
Farrar
,
D. J.
, and
Barnes
,
R. N.
,
1982
, “
Detection of Early Atherosclerosis in M. fascicularis With Transcutaneous Ultrasonic Measurement of the Elastic Properties of the Common Carotid Artery
,”
Tex. Heart Inst. J.
,
9
(
3
), p.
9
.https://www.ncbi.nlm.nih.gov/pubmed/15226937
35.
Buntin
,
C. M.
, and
Silver
,
F. H.
,
1990
, “
Noninvasive Assessment of Mechanical Properties of Peripheral Arteries
,”
Ann. Biomed. Eng.
,
18
(
5
), pp.
549
566
.10.1007/BF02364617
36.
Nagai
,
Y.
,
Fleg
,
J. L.
,
Kemper
,
M. K.
,
Rywik
,
T. M.
,
Earley
,
C. J.
, and
Metter
,
E. J.
,
1999
, “
Carotid Arterial Stiffness as a Surrogate for Aortic Stiffness: Relationship Between Carotid Artery Pressure–Strain Elastic Modulus and Aortic Pulse Wave Velocity
,”
Ultrasound Med. Biol.
,
25
(
2
), pp.
181
188
.10.1016/S0301-5629(98)00146-X
37.
Scott-Drechsel
,
D.
,
Su
,
Z.
,
Hunter
,
K.
,
Li
,
M.
,
Shandas
,
R.
, and
Tan
,
W.
,
2012
, “
A New Flow Co-Culture System for Studying Mechanobiology Effects of Pulse Flow Waves
,”
Cytotechnology
,
64
(
6
), pp.
649
666
.10.1007/s10616-012-9445-2
38.
Byrom
,
M. J.
,
Bannon
,
P. G.
,
White
,
G. H.
, and
Ng
,
M.
,
2010
, “
Animal Models for the Assessment of Novel Vascular Conduits
,”
J. Vasc. Surg.
,
52
(
1
), pp.
176
195
.10.1016/j.jvs.2009.10.080
39.
Vasava
,
P. R.
,
2007
, “Fluid Flow in T-Junction of Pipes,”
Ph.D. dissertation
, Lappeenranta University of Technology, Lappeenranta, Finland.http://www.uvm.edu/pdodds/files/papers/others/2007/vasava2007a.pdf
40.
Tan
,
Y.
,
Tseng
,
P.-O.
,
Wang
,
D.
,
Zhang
,
H.
,
Hunter
,
K.
,
Hertzberg
,
J.
,
Stenmark
,
K. R.
, and
Tan
,
W.
,
2014
, “
Stiffening-Induced High Pulsatility Flow Activates Endothelial Inflammation Via a TLR2/NF-κB Pathway
,”
PLoS One
,
9
(
7
), p.
e102195
.10.1371/journal.pone.0102195
41.
Armentano
,
R. L.
,
Barra
,
J. G.
,
Santana
,
D. B.
,
Pessana
,
F. M.
,
Graf
,
S.
,
Craiem
,
D.
,
Brandani
,
L. M.
,
Baglivo
,
H. P.
, and
Sanchez
,
R. A.
,
2006
, “
Smart Damping Modulation of Carotid Wall Energetics in Human Hypertension: Effects of Angiotensin-Converting Enzyme Inhibition
,”
Hypertension
,
47
(
3
), pp.
384
390
.10.1161/01.HYP.0000205915.15940.15
42.
London
,
G.
,
Covic
,
A.
,
Goldsmith
,
D.
,
Wiecek
,
A.
,
Suleymanlar
,
G.
,
Ortiz
,
A.
,
Massy
,
Z.
,
Lindholm
,
B.
,
Martinez-Castelao
,
A.
,
Fliser
,
D.
,
Agarwal
,
R.
,
Jager
,
K. J.
,
Dekker
,
F. W.
,
Blankestijn
,
P. J.
, and
Zoccali
,
C.
,
2011
, “
Arterial Aging and Arterial Disease: Interplay Between Central Hemodynamics, Cardiac Work, and Organ Flow—Implications for CKD and Cardiovascular Disease
,”
Kidney Int. Suppl.
,
1
(
1
), pp.
10
12
.10.1038/kisup.2011.5
43.
Mitchell
,
G. F.
,
van Buchem
,
M. A.
,
Sigurdsson
,
S.
,
Gotal
,
J. D.
,
Jonsdottir
,
M. K.
,
Kjartansson
,
Ó.
,
Garcia
,
M.
,
Aspelund
,
T.
,
Harris
,
T. B.
,
Gudnason
,
V.
, and
Launer
,
L. J.
,
2011
, “
Arterial Stiffness, Pressure and Flow Pulsatility and Brain Structure and Function: The Age, Gene/Environment Susceptibility—Reykjavik Study
,”
Brain
,
134
(
11
), pp.
3398
3407
.10.1093/brain/awr253
44.
Mitchell
,
G. F.
,
2008
, “
Effects of Central Arterial Aging on the Structure and Function of the Peripheral Vasculature: Implications for End-Organ Damage
,”
J. Appl. Physiol.
,
105
(
5
), pp.
1652
1660
.10.1152/japplphysiol.90549.2008
45.
Redheuil
,
A.
,
Yu
,
W.-C.
,
Wu
,
C. O.
,
Mousseaux
,
E.
,
de Cesare
,
A.
,
Yan
,
R.
,
Kachenoura
,
N.
,
Bluemke
,
D.
, and
Lima
,
J. A. C.
,
2010
, “
Reduced Ascending Aortic Strain and Distensibility Earliest Manifestations of Vascular Aging in Humans
,”
Hypertension
,
55
(
2
), pp.
319
326
.10.1161/HYPERTENSIONAHA.109.141275
46.
Hoeks
,
A. P. G.
,
Willigers
,
J. M.
, and
Reneman
,
R. S.
,
2000
, “
Effects of Assessment and Processing Techniques on the Shape of Arterial Pressure-Distension Loops
,”
J. Vasc. Res.
,
37
(
6
), pp.
494
500
.10.1159/000054082
47.
Li
,
Y.-S.
,
Haga
,
J. H.
, and
Chien
,
S.
,
2005
, “
Molecular Basis of the Effects of Shear Stress on Vascular Endothelial Cells
,”
J. Biomech.
,
38
(
10
), pp.
1949
1971
.10.1016/j.jbiomech.2004.09.030
You do not currently have access to this content.