Abstract

Injury due to underbody loading is increasingly relevant to the safety of the modern warfighter. To accurately evaluate injury risk in this loading modality, a biofidelic anthropomorphic test device (e.g., dummy) is required. Finite element model counterparts to the physical dummies are also useful tools in the evaluation of injury risk, but require validated constitutive material models used in the dummy. However, material model fitting can result in models that are over-fit: they match well with the data they were trained on, but do not extrapolate well to new loading scenarios. In this study, we used a hierarchical approach. Material models created from coupon-level tests were evaluated at the component level, and then verified using blinded component and whole body (WB) tests to establish a material model of the anthropomorphic test device (ATD) neck that was not over-fit. Additionally, a combined metric is introduced that incorporates the well-known correlation analysis (CORA) score with peak characteristics to holistically evaluate the material model performance. A Bergstrom Boyce material model fit to one loop of combined compression and tension experimental data performed the best within the training datasets. Its combined metric scores were 2.51 and 2.18 (max score of 3) in a constrained neck and head neck setup, respectively. In the blinded evaluation including flexed, extended, and WB simulations, similar combined scores were observed with 2.44, 2.26, and 2.60, respectively. The agreement between the combined scores in the training and validation dataset indicated that model was not over-fit and can be extrapolated into untested, but similar loading scenarios.

References

References
1.
Yoganandan
,
N.
,
Stemper
,
B. D.
,
Pintar
,
F. A.
,
Maiman
,
D. J.
,
McEntire
,
B. J.
, and
Chancey
,
V. C.
,
2013
, “
Cervical Spine Injury Biomechanics: Applications for Under Body Blast Loadings in Military Environments
,”
Clinical Biomech.
,
28
(
6
), pp.
602
609
.10.1016/j.clinbiomech.2013.05.007
2.
Blair
,
J. A.
,
Patzkowski
,
J. C.
,
Schoenfeld
,
A. J.
,
Rivera
,
J. D. C.
,
Grenier
,
E. S.
,
Lehman
,
R. A.
,
Hsu
,
J. R.
, and
Consortium
,
S. T. R.
,
2012
, “
Are Spine Injuries Sustained in Battle Truly Different?
,”
Spine J.
,
12
(
9
), pp.
824
829
.10.1016/j.spinee.2011.09.012
3.
Franklyn
,
M.
, and
Laing
,
S.
,
2016
, “
Evaluation of Military Helmets and Roof Padding on Head Injury Potential From Vertical Impacts
,”
Traffic Injury Prev.
,
17
(
7
), pp.
750
757
.10.1080/15389588.2016.1146946
4.
Okie
,
S.
,
2005
, “
Traumatic Brain Injury in the War Zone
,”
New Engl. J. Med.
,
352
(
20
), pp.
2043
2047
.10.1056/NEJMp058102
5.
Foster
,
J. K.
,
Kortge
,
J. O.
, and
Wolanin
,
M. J.
,
1977
, “
Hybrid III-a Biomechanically-Based Crash Test Dummy
,”
SAE
Technical Paper No. 0148-7191. 10.4271/0148-7191
6.
Danelson
,
K. A.
,
Kemper
,
A. R.
,
Mason
,
M. J.
,
Tegtmeyer
,
M.
,
Swiatkowski
,
S. A.
,
Bolte
,
J. H.
, IV
, and
Hardy
,
W. N.
,
2015
, “
Comparison of ATD to PMHS Response in the Under-Body Blast Environment
,”
SAE
Technical Paper No. 2015-22-0017.10.4271/2015-22-0017
7.
Bailey
,
A. M.
,
Christopher
,
J. J.
,
Salzar
,
R. S.
, and
Brozoski
,
F.
,
2015
, “
Comparison of Hybrid-III and Postmortem Human Surrogate Response to Simulated Underbody Blast Loading
,”
ASME J. Biomech. Eng.
,
137
(
5
), p.
051009
.10.1115/1.4029981
8.
Yoganandan
,
N.
,
Sances
,
A.
, and
Pintar
,
F.
,
1989
, “
Biomechanical Evaluation of the Axial Compressive Responses of the Human Cadaveric and Manikin Necks
,”
ASME J. Biomech. Eng.
,
111
(
3
), pp.
250
255
.10.1115/1.3168374
9.
Reed
,
M. P.
,
2013
, “
Development of Anthropometric Specifications for the Warrior Injury Assessment Manikin (WIAMan)
,” Michigan University Ann Arbor Transportation Research Institute, Ann Arbor, MI.
10.
Pietsch
,
H. A.
,
Bosch
,
K. E.
,
Weyland
,
D. R.
,
Spratley
,
E. M.
,
Henderson
,
K. A.
,
Salzar
,
R. S.
,
Smith
,
T. A.
,
Sagara
,
B. M.
,
Demetropoulos
,
C. K.
, and
Dooley
,
C. J.
,
2016
, “
Evaluation of WIAMan Technology Demonstrator Biofidelity Relative to Sub-Injurious PMHS Response in Simulated Under-Body Blast Events
,”
SAE
Technical Paper No. 2016-22-0009.10.4271/2016-22-0009
11.
Pintar
,
F. A.
,
Schlick
,
M. B.
,
Yoganandan
,
N.
,
Voo
,
L.
,
Merkle
,
A. C.
, and
Kleinberger
,
M.
,
2016
, “
Biomechanical Response of Military Booted and Unbooted Foot-Ankle-Tibia From Vertical Loading
,”
SAE
Technical Paper No. 2016-22-0010.10.4271/2016-22-0010
12.
Yoganandan
,
N.
,
Chirvi
,
S.
,
Pintar
,
F. A.
,
Uppal
,
H.
,
Schlick
,
M.
,
Banerjee
,
A.
,
Voo
,
L.
,
Merkle
,
A.
, and
Kleinberger
,
M.
,
2016
, “
Foot–Ankle Fractures and Injury Probability Curves From Post-Mortem Human Surrogate Tests
,”
Ann. Biomed. Eng.
,
44
(
10
), pp.
2937
2947
.10.1007/s10439-016-1598-2
13.
Yoganandan
,
N.
,
Chirvi
,
S.
,
Voo
,
L.
,
DeVogel
,
N.
,
Pintar
,
F. A.
, and
Banerjee
,
A.
,
2017
, “
Foot-Ankle Complex Injury Risk Curves Using Calcaneus Bone Mineral Density Data
,”
J. Mech. Behav. Biomed. Mater.
,
72
, pp.
246
251
.10.1016/j.jmbbm.2017.05.010
14.
Chowdhury
,
M.
,
Crawford
,
D.
,
Shanaman
,
M.
,
Boyle
,
M.
,
Armiger
,
R.
,
Bell
,
C.
,
Lister
,
K.
, and
Shirley
,
A.
,
2017
, “
Polymeric Materials Models in the Warrior Injury Assessment Manikin (WIAMan) Anthropomorphic Test Device (ATD) Tech Demonstrator
,” Army Research Lab, Aberdeen Proving Ground, MD.https://apps.dtic.mil/dtic/tr/fulltext/u2/1023974.pdf
15.
Crawford
,
D. M.
,
Chowdhury
,
M. R.
, and
Pietsch
,
H. A.
,
2016
, “
Mechanical Properties of Polymers Used for Anatomical Components in the Warrior Injury Assessment Manikin (WIAMan) Technology Demonstrator
,” Army Research Lab, Aberdeen Proving Ground, MD.https://apps.dtic.mil/sti/citations/AD1012790
16.
Gibson
,
M. W.
,
Armiger
,
R. S.
,
Biermann
,
P. J.
,
Boyle
,
M. P.
,
Iwaskiw
,
A. S.
,
Lennon
,
A. M.
,
Merkle
,
A. C.
,
Pyles
,
C. O.
,
Seker
,
D. P.
, and
Vavalle
,
N. A.
,
2016
, “
Warrior Injury Assessment Manikin (WIAMan) Lumbar Spine Model Validation: Development, Testing, and Analysis of Physical and Computational Models of the WIAMan Lumbar Spine Materials Demonstrator
,” U.S. Army Research Laboratory, Aberdeen Proving Ground, MD.https://apps.dtic.mil/sti/pdfs/AD1013367.pdf
17.
Hallquist
,
J.
,
2013
, “
L.-D. K. U. s. Manual
, vol. II,” Livermore Software Technology Corporation (LSTC), Livermore, CA.
18.
Gehre
,
C.
,
Gades
,
H.
, and
Wernicke
,
P.
,
2009
, “
Objective Rating of Signals Using Test and Simulation Responses
,”
Proceedings: International Technical Conference on the Enhanced Safety of Vehicles
, National Highway Traffic Safety Administration, Stuttgart, Germany, June
15
18
.https://www.semanticscholar.org/paper/Objective-rating-of-signals-using-test-and-Gehre-Gades/1fa94d8af770e1c225037cd7776023682f12b2fd
19.
Vavalle
,
N. A.
,
Jelen
,
B. C.
,
Moreno
,
D. P.
,
Stitzel
,
J. D.
, and
Gayzik
,
F. S.
,
2013
, “
An Evaluation of Objective Rating Methods for Full-Body Finite Element Model Comparison to PMHS Tests
,”
Traffic Injury Prevention
,
14
(
Supp 1
), pp.
S87
S94
.10.1080/15389588.2013.802777
20.
Bergström
,
J.
, and
Boyce
,
M.
,
1998
, “
Constitutive Modeling of the Large Strain Time-Dependent Behavior of Elastomers
,”
J. Mech. Phys. Solids
,
46
(
5
), pp.
931
954
.10.1016/S0022-5096(97)00075-6
21.
Kleinberger
,
M.
,
Sun
,
E.
,
Eppinger
,
R.
,
Kuppa
,
S.
, and
Saul
,
R.
,
1998
, “
Development of Improved Injury Criteria for the Assessment of Advanced Automotive Restraint Systems
,”
NHTSA Docket
,
4405
(
9
), pp.
4
104
.https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/criteria.pdf
22.
Decker W
,
Y. X.
,
Baker
,
A. M.
,
Stitzel
,
J. D.
, and
Gayzik
,
F. S.
,
2018
, “
Comparison of CORA to Head Injury Biomechanical Metrics Using an American Football Helmet Model
,”
Proceedings of the Council on the Biomechanics of Injury
(
IRCOBI
),
Annual Meeting Proceedings, Athens, Greece
, Sept.
12
14
.http://www.ircobi.org/wordpress/downloads/irc18/pdf-files/53.pdf
You do not currently have access to this content.