Abstract

This paper presents an innovative design methodology for development of lower limb exoskeletons with the fabrication and experimental evaluation of prototype hardware. The proposed design approach is specifically conceived to be suitable for the pediatric population and uses additive manufacturing and a model parameterized in terms of subject anthropometrics to give a person-specific custom fit. The methodology is applied to create computer-aided design models using average anthropometrics of children 6–11 years old and using anthropometrics of an individual measured by the researchers. This demonstrates that the approach can scale to subject weight and height. A prototype exoskeleton is fabricated, which can actuate the hip and knee joints without restricting hip abduction-adduction motion. In order to test usability of the device and evaluate walking assistance, user effort is quantified in an assisted condition where the subject walks on a level treadmill with the exoskeleton powered. This is compared to an unassisted condition with the exoskeleton unpowered and a baseline condition with the subject not wearing the exoskeleton. Comparing assisted to baseline conditions, torque magnitudes increased at the hip and knee, mechanical energy generated increased at the hip but decreased at the knee, and muscle activations increased in the Vastus Lateralis but decreased in the Biceps Femoris. While the preliminary evidence for walking assistance is not entirely convincing for the tested conditions, the presented design methodology itself is promising as it has been successfully validated through the creation of computer-aided design models for children and fabrication of a serviceable exoskeleton prototype.

References

1.
Campbell
,
S. K.
,
Palisano
,
R. J.
, and
Orlin
,
M. N.
,
2012
,
Physical Therapy for Children
,
Elsevier Saunders
, St. Louis, MO.
2.
Alexander
,
M. A.
,
Matthews
,
D. J.
, and
Murphy
,
K. P.
,
2015
,
Pediatric Rehabilitation: Principles and Practice
,
Demos Medical Publishing
, New York.
3.
Damiano
,
D. L.
, and
DeJong
,
S. L.
,
2009
, “
A Systematic Review of the Effectiveness of Treadmill Training and Body Weight Support in Pediatric Rehabilitation
,”
J. Neurol. Phys. Ther.
,
33
(
1
), pp.
27
44
.10.1097/NPT.0b013e31819800e2
4.
Mehrholz
,
J.
,
Pohl
,
M.
, and
Elsner
,
B.
,
2014
, “
Treadmill Training and Body Weight Support for Walking After Stroke
,”
Cochrane Database of Syst. Rev.
,
2014(1), p. 163
.10.1002/14651858.CD002840.pub3
5.
Viteckova
,
S.
,
Kutilek
,
P.
, and
Jirina
,
M.
,
2013
, “
Wearable Lower Limb Robotics: A Review
,”
Biocybern. Biomed. Eng
,.,
33
(
2
), pp.
96
105
.10.1016/j.bbe.2013.03.005
6.
Volpini
,
M.
,
Bartenbach
,
V.
,
Pinotti
,
M.
, and
Riener
,
R.
,
2017
, “
Clinical Evaluation of a Low-Cost Robot for Use in Physiotherapy and Gait Training
,”
J. Rehabil. Assis. Technol. Eng.
,
4
(
1
), pp.
1
11
.10.1177/2055668316688410
7.
Westlake
,
K. P.
, and
Patten
,
C.
,
2009
, “
Pilot Study of Lokomat Versus Manual-Assisted Treadmill Training for Locomotor Recovery Post-Stroke
,”
J. NeuroEng. Rehabil.
,
6
(
1
), p.
18
.10.1186/1743-0003-6-18
8.
Dollar
,
A. M.
, and
Herr
,
H.
,
2008
, “
Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art
,”
IEEE Trans. Rob.
,
24
(
1
), pp.
144
158
.10.1109/TRO.2008.915453
9.
Young
,
A.
, and
Ferris
,
D.
,
2017
, “
State-of-the-Art and Future Directions for Robotic Lower Limb Exoskeletons
,”
IEEE Trans Neural Syst. Rehabil. Eng.
,
25
(
2
), pp.
171
182
.10.1109/TNSRE.2016.2521160
10.
Riener
,
R.
,
2012
, “
Technology of the Robotic Gait Orthosis Lokomat
,”
Neurorehabilitation Technology
,
V.
Dietz
,
T.
Nef
, and
W.Z.
Rymer
, eds.,
Springer London
,
London
, UK, pp.
221
232
.
11.
Pajaro-Blazquez
,
M.
,
Shetye
,
R.
,
Gallegos-Salazar
,
J.
, and
Bonato
,
P.
,
2013
, “
Robotic-Assisted Gait Training in Children With Cerebral Palsy in Clinical Practice
,”
Converg. Clin. Eng. Res. Neurorehabil.
,
1
, pp.
29
33
.10.1007/978-3-642-34546-3
12.
Sancho-Pérez
,
J.
,
Pérez
,
M.
,
García
,
E.
,
Sanz-Merodio
,
D.
,
Plaza
,
A.
, and
Cestari
,
M.
,
2016
, “
Mechanical Description of ATLAS 2020, a 10-DOF Paediatric Exoskeleton
,”
Proceedings of the 19th International Conference on CLAWAR
, London, UK,
Sept. 12–14, pp.
814
822
.https://digital.csic.es/bitstream/10261/153465/1/p769_%28070%29_Paper.pdf
13.
Sanz-Merodio
,
D.
,
Sancho
,
J.
,
Pérez
,
M.
, and
García
,
E.
,
2016
, “
Control Architecture of the ATLAS 2020 Lower-Limb Active Orthosis
,”
Proceedings of the 19th International Conference on CLAWAR
, London, UK, Sept. 12–14, pp.
860
868
.10.1142/9789813149137_0100
14.
Cestari
,
M.
,
Sanz-Merodio
,
D.
,
Arevalo
,
J. C.
, and
Garcia
,
E.
,
2014
, “
ARES, a Variable Stiffness Actuator With Embedded Force Sensor for the ATLAS Exoskeleton
,”
Ind. Robot
,
41
(
6
), pp.
518
526
.10.1108/IR-06-2014-0350
15.
Patané
,
F.
,
Rossi
,
S.
,
Sette
,
F. D.
,
Taborri
,
J.
, and
Cappa
,
P.
,
2017
, “
WAKE-Up Exoskeleton to Assist Children With Cerebral Palsy: Design and Preliminary Evaluation in Level Walking
,”
IEEE Trans. Neural Syst. Rehabil.
,
25
(
7
), pp.
906
916
.10.1109/TNSRE.2017.2651404
16.
Rossi
,
S.
,
Patané
,
F.
,
Del Sette
,
F.
, and
Cappa
,
P.
,
2014
, “
WAKE-Up: A Wearable Ankle Knee Exoskeleton
,”
Fifth IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics
,
Sao Paulo, Brazil
, Aug. 12–15, pp.
504
507
.https://elearning.uniroma1.it/pluginfile.php/237480/mod_resource/content/2/IEEE%20International%20Conference%20on%20Biomedical%20Robotics%20and%20Biomechatronics.pdf
17.
Lerner
,
Z. F.
,
Damiano
,
D. L.
, and
Bulea
,
T. C.
,
2017
, “
A Lower-Extremity Exoskeleton Improves Knee Extension in Children With Crouch Gait From Cerebral Palsy
,”
Sci. Transl. Med.
,
9
(
404
), p.
eaam9145
.10.1126/scitranslmed.aam9145
18.
Lerner
,
Z. F.
,
Damiano
,
D. L.
,
Park
,
H. S.
,
Gravunder
,
A. J.
, and
Bulea
,
T. C.
,
2017
, “
A Robotic Exoskeleton for Treatment of Crouch Gait in Children With Cerebral Palsy: Design and Initial Application
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
6
), pp.
650
659
.10.1109/TNSRE.2016.2595501
19.
Laubscher
,
C. A.
,
2020
, “Design and Development of a Powered Pediatric Lower-Limb Orthosis,” Ph.D. dissertation,
Cleveland State University
, Cleveland, OH.https://etd.ohiolink.edu/apexprod/rws_etd/send_file/send?accession=csu1590485999836396&disposition=inline
20.
Fosch-Villaronga
,
E.
,
Čartolovni
,
A.
, and
Pierce
,
R. L.
,
2020
, “
Promoting Inclusiveness in Exoskeleton Robotics: Addressing Challenges for Pediatric Access
,”
Paladyn, J. Behav. Rob.
,
11
(
1
), pp.
327
339
.10.1515/pjbr-2020-0021
21.
Laubscher
,
C. A.
,
Farris
,
R. J.
, and
Sawicki
,
J. T.
,
2017
, “
Design and Preliminary Evaluation of a Powered Pediatric Lower Limb Orthosis
,”
ASME
Paper No. DETC2017-67599.https://etd.ohiolink.edu/apexprod/rws_etd/send_file/send?accession=csu1590485999836396&disposition=inline
22.
Laubscher
,
C.
, and
Sawicki
,
J.
,
2019
, “
Gait Guidance Control for Damping of Unnatural Motion in a Powered Pediatric Lower-Limb Orthosis
,”
IEEE/RAS-EMBS International Conference on Rehabilitation Robotics
, Toronto, ON, Canada, June 24–28, pp.
676
681
.10.1109/ICORR.2019.8779437
23.
Laubscher
,
C. A.
,
Farris
,
R. J.
, and
Sawicki
,
J. T.
,
2020
, “
Angular Momentum-Based Control of an Underactuated Orthotic System for Crouch-to-Stand Motion
,”
Auton. Robot.
,
44
(
8
), pp.
1469
1484
.10.1007/s10514-020-09938-5
24.
Fryar
,
C. D.
,
Gu
,
Q.
, and
Ogden
,
C. L.
,
2012
,
Anthropometric Reference Data for Children and Adults: United States, 2007–2010
,
National Center for Health Statistics
,
Hyattsville, MD
.
25.
Wingstrand
,
M.
,
Hägglund
,
G.
, and
Rodby-Bousquet
,
E.
,
2014
, “
Ankle-Foot Orthoses in Children With Cerebral Palsy: A Cross Sectional Population Based Study of 2200 Children
,”
BMC Musculoskeletal Disorders
,
15
(
1
), p.
327
.10.1186/1471-2474-15-327
26.
Sawicki
,
J. T.
,
Laubscher
,
C. A.
,
Farris
,
R. J.
, and
Etheridge
,
S. J.-S.
,
2017
, “
Actuating Device for Powered Orthosis
,” U.S. Patent Application No. 15/485,962.
27.
Snyder
,
R. G.
,
Schneider
,
L. W.
,
Owings
,
C. L.
,
Reynolds
,
H. M.
,
Golmb
,
D. H.
, and
Schork
,
M. A.
,
1977
, “
Anthropometry of Infants, Children, and Youths to Age 18 for Product Safety Design
,” Consumer Product Safety Commission, Bethesda, MD, Report No.
UM-HSRI-77-17
.http://hdl.handle.net/2027.42/684
28.
Winter
,
D. A.
,
1991
,
The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological
,
University of Waterloo Press
, Waterloo, ON, Canada.
29.
Winter
,
D. A.
,
2009
,
Biomechanics and Motor Control of Human Movement
,
Wiley
,
Hoboken, NJ
.
30.
Barzilay
,
O.
, and
Wolf
,
A.
,
2011
, “
A Fast Implementation for EMG Signal Linear Envelope Computation
,”
J. Electromyogr. Kinesiol.
,
21
(
4
), pp.
678
682
.10.1016/j.jelekin.2011.04.004
31.
Pataky
,
T. C.
,
2010
, “
Generalized N-Dimensional Biomechanical Field Analysis Using Statistical Parametric Mapping
,”
J. Biomech.
,
43
(
10
), pp.
1976
1982
.10.1016/j.jbiomech.2010.03.008
32.
Browning
,
R. C.
,
Modica
,
J. R.
,
Kram
,
R.
, and
Goswami
,
A.
,
2007
, “
The Effects of Adding Mass to the Legs on the Energetics and Biomechanics of Walking
,”
Med. Sci. Sports Exer.
,
39
(
3
), pp.
515
525
.10.1249/mss.0b013e31802b3562
33.
Yoshino
,
K.
,
Motoshige
,
T.
,
Araki
,
T.
, and
Matsuoka
,
K.
,
2004
, “
Effect of Prolonged Free-Walking Fatigue on Gait and Physiological Rhythm
,”
J. Biomech.
,
37
(
8
), pp.
1271
1280
.10.1016/j.jbiomech.2003.11.031
34.
Ray
,
G. C.
, and
Guha
,
S. K.
,
1983
, “
Equivalent Electrical Representation of the Sweat Layer and Gain Compensation of the EMG Amplifier
,”
IEEE Trans. Biomed. Eng.
,
BME-30
(
2
), pp.
130
132
.10.1109/TBME.1983.325209
35.
Kroemer
,
K. H. E.
,
Kroemer
,
H. J.
, and
Kroemer-Elbert
,
K. E.
,
1986
,
Engineering Physiology: Physiologic Bases of Human Factors/Ergonomics
,
Elsevier
, New York.
36.
Fourie
,
Z.
,
Damstra
,
J.
,
Gerrits
,
P. O.
, and
Ren
,
Y.
,
2011
, “
Evaluation of Anthropometric Accuracy and Reliability Using Different Three-Dimensional Scanning Systems
,”
Forensic Sci. Int.
,
207
(
1–3
), pp.
127
134
.10.1016/j.forsciint.2010.09.018
37.
Goo
,
A.
,
Laubscher
,
C. A.
,
Farris
,
R. J.
, and
Sawicki
,
J. T.
,
2020
, “
Design and Evaluation of a Pediatric Lower‐Limb Exoskeleton Joint Actuator
,”
Actuators
, 9(4), p.
16
.10.3390/act9040138
38.
Gams
,
A.
,
Petrič
,
T.
,
Debevec
,
T.
, and
Babič
,
J.
,
2013
, “
Effects of Robotic Knee Exoskeleton on Human Energy Expenditure
,”
IEEE Trans. Biomed. Eng.
,
60
(
6
), pp.
1636
1644
.10.1109/TBME.2013.2240682
39.
Aguirre-Ollinger
,
G.
,
Colgate
,
J. E.
,
Peshkin
,
M. A.
, and
Goswami
,
A.
,
2011
, “
Design of an Active One-Degree-of-Freedom Lower-Limb Exoskeleton With Inertia Compensation
,”
Int. J. Rob. Res.
,
30
(
4
), pp.
486
499
.10.1177/0278364910385730
40.
Ferris
,
D. P.
,
Sawicki
,
G. S.
, and
Daley
,
M. A.
,
2007
, “
A Physiologist's Perspective on Robotic Exoskeletons for Human Locomotion
,”
Int. J. Human. Robot.
,
4
(
3
), pp.
507
528
.10.1142/S0219843607001138
You do not currently have access to this content.