Abstract

Biomechanical testing of long bones can be susceptible to errors and uncertainty due to malalignment of specimens with respect to the mechanical axis of the test frame. To solve this problem, we designed a novel, customizable alignment and potting fixture for long bone testing. The fixture consists of three-dimensional-printed components modeled from specimen-specific computed tomography (CT) scans to achieve a predetermined specimen alignment. We demonstrated the functionality of this fixture by comparing benchtop torsional test results to specimen-matched finite element models and found a strong correlation (R2 = 0.95, p < 0.001). Additional computational models were used to estimate the impact of malalignment on mechanical behavior in both torsion and axial compression. Results confirmed that torsion testing is relatively robust to alignment artifacts, with absolute percent errors less than 8% in all malalignment scenarios. In contrast, axial testing was highly sensitive to setup errors, experiencing absolute percent errors up to 50% with off-center malalignment and up to 170% with angular malalignment. This suggests that whenever appropriate, torsion tests should be used preferentially as a summary mechanical measure. When more challenging modes of loading are required, pretest clinical-resolution CT scanning can be effectively used to create potting fixtures that allow for precise preplanned specimen alignment. This may be particularly important for more sensitive biomechanical tests (e.g., axial compressive tests) that may be needed for industrial applications, such as orthopedic implant design.

References

1.
Sommers
,
M. B.
,
Fitzpatrick
,
D. C.
,
Madey
,
S. M.
,
Zanderschulp
,
C.
,
Vande
., and
Bottlang
,
M.
,
2007
, “
A Surrogate Long-Bone Model With Osteoporotic Material Properties for Biomechanical Testing of Fracture Implants
,”
J. Biomech.
,
40
(
15
), pp.
3297
3304
.10.1016/j.jbiomech.2007.04.024
2.
Wähnert
,
D.
,
Hoffmeier
,
K. L.
,
Stolarczyk
,
Y.
,
Fröber
,
R.
,
Hofmann
,
G. O.
, and
Mückley
,
T.
,
2011
, “
Evaluation of a Customized Artificial Osteoporotic Bone Model of the Distal Femur
,”
J. Biomater. Appl.
,
26
(
4
), pp.
451
464
.10.1177/0885328210367830
3.
Cristofolini
,
L.
, and
Viceconti
,
M.
,
2000
, “
Mechanical Validation of Whole Bone Composite Tibia Models
,”
J. Biomech.
,
33
(
3
), pp.
279
288
.10.1016/S0021-9290(99)00186-4
4.
Zhao
,
S.
,
Arnold
,
M.
,
Abel
,
R. L.
,
Cobb
,
J. P.
,
Ma
,
S.
,
Hansen
,
U.
, and
Boughton
,
O.
,
2018
, “
Standardizing Compression Testing for Measuring the Stiffness of Human Bone
,”
Bone Jt. Res.
,
7
(
8
), pp.
524
538
.10.1302/2046-3758.78.BJR-2018-0025.R1
5.
Öhman
,
C.
,
Baleani
,
M.
,
Perilli
,
E.
,
Dall'Ara
,
E.
,
Tassani
,
S.
,
Baruffaldi
,
F.
, and
Viceconti
,
M.
,
2007
, “
Mechanical Testing of Cancellous Bone From the Femoral Head: Experimental Errors Due to Off-Axis Measurements
,”
J. Biomech.
,
40
(
11
), pp.
2426
2433
.10.1016/j.jbiomech.2006.11.020
6.
Morgan
,
E. F.
, and
Keaveny
,
T. M.
,
2001
, “
Dependence of Yield Strain of Human Trabecular Bone on Anatomic Site
,”
J. Biomech.
,
34
(
5
), pp.
569
577
.10.1016/S0021-9290(01)00011-2
7.
Perilli
,
E.
,
Baleani
,
M.
,
Öhman
,
C.
,
Fognani
,
R.
,
Baruffaldi
,
F.
, and
Viceconti
,
M.
,
2008
, “
Dependence of Mechanical Compressive Strength on Local Variations in Microarchitecture in Cancellous Bone of Proximal Human Femur
,”
J. Biomech.
,
41
(
2
), pp.
438
446
.10.1016/j.jbiomech.2007.08.003
8.
Bell
,
S.
,
Ajami
,
E.
, and
Davies
,
J. E.
,
2014
, “
An Improved Mechanical Testing Method to Assess Bone-Implant Anchorage
,”
J. Vis. Exp.
, (
84
), p. e51221
.10.3791/51221
9.
Cheong
,
V. S.
, and
Bull
,
A. M. J.
,
2015
, “
A Novel Specimen-Specific Methodology to Optimise the Alignment of Long Bones for Experimental Testing
,”
J. Biomech.
,
48
(
16
), pp.
4317
4321
.10.1016/j.jbiomech.2015.10.011
10.
Danesi
,
V.
,
Zani
,
L.
,
Scheele
,
A.
,
Berra
,
F.
, and
Cristofolini
,
L.
,
2014
, “
Reproducible Reference Frame for In Vitro Testing of the Human Vertebrae
,”
J. Biomech.
,
47
(
1
), pp.
313
318
.10.1016/j.jbiomech.2013.10.005
11.
Van Sint Jan
,
S.
, and
Della Croce
,
U.
,
2005
, “
Identifying the Location of Human Skeletal Landmarks: Why Standardized Definitions Are Necessary - A Proposal
,”
Clin. Biomech.
,
20
(
6
), pp.
659
660
.10.1016/j.clinbiomech.2005.02.002
12.
Gardner
,
M. J.
,
Brophy
,
R. H.
,
Campbell
,
D.
,
Mahajan
,
A.
,
Wright
,
T. M.
,
Helfet
,
D. L.
, and
Lorich
,
D. G.
,
2005
, “
The Mechanical Behavior of Locking Compression Plates Compared With Dynamic Compression Plates in a Cadaver Radius Model
,”
J. Orthop. Trauma
,
19
(
9
), pp.
597
603
.10.1097/01.bot.0000174033.30054.5f
13.
Edmonds
,
J. L.
,
Bowers
,
K. W.
,
Toby
,
E. B.
,
Jayaraman
,
G.
, and
Girod
,
D. A.
,
2000
, “
Torsional Strength of the Radius After Osteofasciocutaneous Free Flap Harvest With and Without Primary Bone Plating
,”
Otolaryngol. Head Neck Surg.
,
123
(
4
), pp.
400
408
.10.1067/mhn.2000.109474
14.
Peine
,
R.
,
Rikli
,
D. A.
,
Hoffmann
,
R.
,
Duda
,
G.
, and
Regazzoni
,
P.
,
2000
, “
Comparison of Three Different Plating Techniques for the Dorsum of the Distal Radius: A Biomechanical Study
,”
J. Hand Surg. Am.
,
25
(
1
), pp.
29
33
.10.1053/jhsu.2000.jhsu025a0029
15.
Conti
,
G.
,
Cristofolini
,
L.
,
Juszczyk
,
M.
,
Leardini
,
A.
, and
Viceconti
,
M.
,
2008
, “
Comparison of Three Standard Anatomical Reference Frames for the Tibia-Fibula Complex
,”
J. Biomech.
,
41
(
16
), pp.
3384
3389
.10.1016/j.jbiomech.2008.09.009
16.
Ruff
,
C. B.
, and
Hayes
,
W. C.
,
1983
, “
Cross‐Sectional Geometry of Pecos Pueblo Femora and Tibiae—a Biomechanical Investigation: I. Method and General Patterns of Variation
,”
Am. J. Phys. Anthropol.
,
60
(
3
), pp.
359
381
.10.1002/ajpa.1330600308
17.
Lacheta
,
L.
,
Siebenlist
,
S.
,
Lauber
,
M.
,
Willinger
,
L.
,
Fischer
,
N.
,
Imhoff
,
A. B.
, and
Lenich
,
A.
,
2019
, “
Proximal Radius Fracture Morphology Following Axial Force Impact: A Biomechanical Evaluation of Fracture Patterns
,”
BMC Musculoskelet. Disord.
,
20
, p. 147.10.1186/s12891-019-2529-9
18.
Mugnai
,
R.
,
Tarallo
,
L.
,
Capra
,
F.
, and
Catani
,
F.
,
2018
, “
Biomechanical Comparison Between Stainless Steel, Titanium and Carbon-Fiber Reinforced Polyetheretherketone Volar Locking Plates for Distal Radius Fractures
,”
Orthop. Traumatol. Surg. Res.
,
104
(
6
), pp.
877
882
.10.1016/j.otsr.2018.05.002
19.
Hsu
,
E. S.
,
Patwardhan
,
A. G.
,
Meade
,
K. P.
,
Light
,
T. R.
, and
Martin
,
W. R.
,
1993
, “
Cross-Sectional Geometrical Properties and Bone Mineral Contents of the Human Radius and Ulna
,”
J. Biomech.
,
26
(
11
), pp.
1307
1318
.10.1016/0021-9290(93)90354-H
20.
Wu
,
G.
,
Van Der Helm
,
F. C. T.
,
Veeger
,
H. E. J.
,
Makhsous
,
M.
,
Van Roy
,
P.
,
Anglin
,
C.
,
Nagels
,
J.
,
Karduna
,
A. R.
,
McQuade
,
K.
,
Wang
,
X.
,
Werner
,
F. W.
, and
Buchholz
,
B.
,
2005
, “
ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion—Part II: Shoulder, Elbow, Wrist and Hand
,”
J. Biomech.
,
38
(
5
), pp.
981
992
.10.1016/j.jbiomech.2004.05.042
21.
de Roo
,
M. G. A.
,
Dobbe
,
J. G. G.
,
Peymani
,
A.
,
van der Made
,
A. D.
,
Strackee
,
S. D.
, and
Streekstra
,
G. J.
,
2020
, “
Accuracy of Manual and Automatic Placement of an Anatomical Coordinate System for the Full or Partial Radius in 3D Space
,”
Sci. Rep.
,
10
(
1
), pp.
1
9
.10.1038/s41598-020-65060-7
22.
Cristofolini
,
L.
,
2012
, “
Handbook of Anthropometry: Physical Measures of Human Form in Health and Disease
,”
Handbook of Anthropometry: Physical Measures of Human Form in Health and Disease
, Springer Science & Business Media, Berlin, pp.
2971
2999
.
23.
Morgan
,
E. F.
,
Bayraktar
,
H. H.
, and
Keaveny
,
T. M.
,
2003
, “
Trabecular Bone Modulus-Density Relationships Depend on Anatomic Site
,”
J. Biomech.
,
36
(
7
), pp.
897
904
.10.1016/S0021-9290(03)00071-X
24.
Osterhoff
,
G.
,
Morgan
,
E. F.
,
Shefelbine
,
S. J.
,
Karim
,
L.
,
McNamara
,
L. M.
, and
Augat
,
P.
,
2016
, “
Bone Mechanical Properties and Changes With Osteoporosis
,”
Injury
,
47
, pp.
S11
S20
.10.1016/S0020-1383(16)47003-8
25.
Helgason
,
B.
,
Perilli
,
E.
,
Schileo
,
E.
,
Taddei
,
F.
,
Brynjólfsson
,
S.
, and
Viceconti
,
M.
,
2008
, “
Mathematical Relationships Between Bone Density and Mechanical Properties: A Literature Review
,”
Clin. Biomech.
,
23
(
2
), pp.
135
146
.10.1016/j.clinbiomech.2007.08.024
26.
Hoffler
,
C. E.
,
Moore
,
K. E.
,
Kozloff
,
K.
,
Zysset
,
P. K.
,
Brown
,
M. B.
, and
Goldstein
,
S. A.
,
2000
, “
Heterogeneity of Bone Lamellar-Level Elastic Moduli
,”
Bone
,
26
(
6
), pp.
603
609
.10.1016/S8756-3282(00)00268-4
27.
Rikli
,
D. A.
,
Honigmann
,
P.
,
Babst
,
R.
,
Cristalli
,
A.
,
Morlock
,
M. M.
, and
Mittlmeier
,
T.
,
2007
, “
Intra-Articular Pressure Measurement in the Radioulnocarpal Joint Using a Novel Sensor: In Vitro and In Vivo Results
,”
J. Hand Surg. Am.
,
32
(
1
), pp.
67
75
.10.1016/j.jhsa.2006.10.007
28.
Horii
,
E.
,
Garcia-Elias
,
M.
,
An
,
K. N.
,
Bishop
,
A. T.
,
Cooney
,
W. P.
,
Linscheid
,
R. L.
, and
Chao
,
E. Y. S.
,
1990
, “
Effect on Force Transmission Across the Carpus in Procedures Used to Treat Kienböck's Disease
,”
J. Hand Surg. Am.
,
15
(
3
), pp.
393
400
.10.1016/0363-5023(90)90049-W
29.
Salas
,
C.
,
Brantley
,
J. A.
,
Clark
,
J.
,
Reda Taha
,
M.
,
Myers
,
O. B.
, and
Mercer
,
D.
,
2018
, “
Damage in a Distal Radius Fracture Model Treated With Locked Volar Plating After Simulated Postoperative Loading
,”
J. Hand Surg. Am.
,
43
(
7
), pp. 679.e1–679.e6.10.1016/j.jhsa.2017.12.019
30.
Konstantinidis
,
L.
,
Helwig
,
P.
,
Seifert
,
J.
,
Hirschmüller
,
A.
,
Liodakis
,
E.
,
Südkamp
,
N. P.
, and
Oberst
,
M.
,
2011
, “
Internal Fixation of Dorsally Comminuted Fractures of the Distal Part of the Radius: A Biomechanical Analysis of Volar Plate and Intramedullary Nail Fracture Stability
,”
Arch. Orthop. Trauma Surg.
,
131
(
11
), pp.
1529
1537
.10.1007/s00402-011-1346-x
31.
Putnam
,
M. D.
,
Meyer
,
N. J.
,
Nelson
,
E. W.
,
Gesensway
,
D.
, and
Lewis
,
J. L.
,
2000
, “
Distal Radial Metaphyseal Forces in an Extrinsic Grip Model: Implications for Postfracture Rehabilitation
,”
J. Hand Surg. Am.
,
25
(
3
), pp.
469
475
.10.1053/jhsu.2000.6915
32.
Verstraete
,
M. A.
,
Willemot
,
L.
,
Van Onsem
,
S.
,
Stevens
,
C.
,
Arnout
,
N.
, and
Victor
,
J.
,
2016
, “
3D Printed Guides for Controlled Alignment in Biomechanics Tests
,”
J. Biomech.
,
49
(
3
), pp.
484
487
.10.1016/j.jbiomech.2015.12.036
33.
Venne
,
G.
,
Esau
,
G.
,
Bicknell
,
R. T.
, and
Bryant
,
J. T.
,
2018
, “
3D Printed Anatomy-Specific Fixture for Consistent Glenoid Cavity Position in Shoulder Simulator
,”
J. Healthc. Eng.
,
2018
, pp.
1
6
.10.1155/2018/2572730
34.
Bizzotto
,
N.
,
Tami
,
I.
,
Santucci
,
A.
,
Adani
,
R.
,
Poggi
,
P.
,
Romani
,
D.
,
Carpeggiani
,
G.
,
Ferraro
,
F.
,
Festa
,
S.
, and
Magnan
,
B.
,
2016
, “
3D Printed Replica of Articular Fractures for Surgical Planning and Patient Consent: A Two Years Multi-Centric Experience
,”
3D Print. Med.
,
2
(
1
), pp.
4
9
.10.1186/s41205-016-0006-8
35.
Dobbe
,
J. G. G.
,
Vroemen
,
J. C.
,
Strackee
,
S. D.
, and
Streekstra
,
G. J.
,
2013
, “
Patient-Tailored Plate for Bone Fixation and Accurate 3D Positioning in Corrective Osteotomy
,”
Med. Biol. Eng. Comput.
,
51
(
1–2
), pp.
19
27
.10.1007/s11517-012-0959-8
36.
Sutradhar
,
A.
,
Park
,
J.
,
Carrau
,
D.
,
Nguyen
,
T. H.
,
Miller
,
M. J.
, and
Paulino
,
G. H.
,
2016
, “
Designing Patient-Specific 3D Printed Craniofacial Implants Using a Novel Topology Optimization Method
,”
Med. Biol. Eng. Comput.
,
54
(
7
), pp.
1123
1135
.10.1007/s11517-015-1418-0
37.
Knowles
,
N. K.
,
Reeves
,
J. M.
, and
Ferreira
,
L. M.
,
2016
, “
Quantitative Computed Tomography (QCT) Derived Bone Mineral Density (BMD) in Finite Element Studies: A Review of the Literature
,”
J. Exp. Orthop.
,
3
(
1
), p.
36
.10.1186/s40634-016-0072-2
38.
Synek
,
A.
,
Chevalier
,
Y.
,
Baumbach
,
S. F.
, and
Pahr
,
D. H.
,
2015
, “
The Influence of Bone Density and Anisotropy in Finite Element Models of Distal Radius Fracture Osteosynthesis: Evaluations and Comparison to Experiments
,”
J. Biomech.
,
48
(
15
), pp.
4116
4123
.10.1016/j.jbiomech.2015.10.012
39.
Snyder
,
S. M.
,
Schneider
,
E.
,
Miiller
,
M. E.
,
Schneider
,
E.
, and
Muller
,
M. E.
,
1991
, “
Estimation of Mechanical Properties of Cortical Bone by Computed Tomography
,”
J. Orthop. Res. Orthop. Res. Soc.
,
9
(
3
), pp.
422
431
.10.1002/jor.1100090315
You do not currently have access to this content.