Abstract

The purpose of this work is to investigate the efficiency of wearable assistive devices under different load-carriage walking. We designed an experimental platform with a lightweight ankle-assisted robot. Eight subjects were tested in three experimental conditions: free walk with load (FWL), power-off with load (POFL), and power-on with load for different levels of force at a walking speed of 3.6 km/h. We recorded the metabolic expenditure and kinematics of the subjects under three levels of load-carried (10%, 20%, and 30% of body mass). We define the critical force, where at a certain load, the robot inputs a certain force to the human body, and with the assistance of this force, the positive effect of the robot on the human body exactly compensates for the negative effect. The critical forces from the fit of the assistive force and metabolic cost curves were 130 N, 160 N, and 215 N at three different load levels. The intrinsic weight of our device increases mechanical work at the ankle as the load weight rises with 2.08 J, 2.43 J, and 2.73 J for one leg during a gait cycle. With weight bearing increasing, the ratio of the mechanical work input by the robot to the mechanical work output by the weight of the device decreases (from 0.904 to 0.717 and 0.513), verifying that the walking assistance efficiency of such devices decreases as the weight rises.

References

1.
Mala
,
J.
,
Szivak
,
T. K.
, and
Flanagan
,
S. D.
,
2016
, “
The Role of Strength and Power During Performance of High Intensity Military Tasks Under Heavy Load Carriage
,”
US Army Med. Dep. J.
, 2015(
2–15
), pp.
3
11
.https://pubmed.ncbi.nlm.nih.gov/26101902/
2.
Jones
,
G. R.
,
2005
,
Human Load Carriage: The Ergonomic Assessment and Development of Military Load Carriage Systems
, Chap. 3,
Loughborough University Press
,
Lestrafborough, UK
.
3.
Saelens
,
B. E.
,
Sallis
,
J. F.
, and
Frank
,
L. D.
,
2003
, “
Environmental Correlates of Walking and Cycling: Findings From the Transportation, Urban Design, and Planning Literatures
,”
Ann. Behav. Med.
,
25
(
2
), pp.
80
91
.10.1207/S15324796ABM2502_03
4.
Powell
,
K. E.
,
Thompson
,
P. D.
,
Caspersen
,
C. J.
, and
Kendrick
,
J. S.
,
1987
, “
Physical Activity and the Incidence of Coronary Heart Disease
,”
Ann. Behav. Med.
,
8
(
1
), pp.
253
287
.10.1146/annurev.pu.08.050187.001345
5.
Browning
,
R. C.
,
Modica
,
J. R.
,
Kram
,
R.
, and
Goswami
,
A.
,
2007
, “
The Effects of Adding Mass to the Legs on the Energetics and Biomechanics of Walking
,”
Med. Sports. Exerc.
,
39
(
3
), pp.
515
525
.10.1249/mss.0b013e31802b3562
6.
Macdonald
,
D. A.
,
1996
, “
Human Walking, 2nd Edn: Edited by Jessica Rose & James G. Gamble. Williams & Wilkins, 1994
,”
Curr. Orthop.
,
10
(
3
), pp.
206
207
.10.1016/S0268-0890(96)90018-3
7.
Hogan
,
M. C.
,
Ingham
,
E.
, and
Kurdak
,
S. S.
,
1998
, “
Contraction Duration Affects Metabolic Energy Cost and Fatigue in Skeletal Muscle
,”
Am. J. Physiol.
,
274
(
3 Pt 1
), pp.
397
402
.10.1152/ajpendo.1998.274.3.E397
8.
Hamonko
,
M. T.
,
McIntosh
,
S. E.
,
Schimelpfenig
,
T.
, and
Leemon
,
D.
,
2011
, “
Injuries Related to Hiking With a Pack During National Outdoor Leadership School Courses: A Risk Factor Analysis
,”
Wilderness Environ. Med.
,
22
(
1
), pp.
2
6
.10.1016/j.wem.2010.09.010
9.
Grenier
,
J. G.
,
Millet
,
G. Y.
,
Peyrot
,
N.
,
Samozino
,
P.
,
Oullion
,
R.
,
Messonnier
,
L.
, and
Morin
,
J.-B.
,
2012
, “
Effects of Extreme-Duration Heavy Load Carriage on Neuromuscular Function and Locomotion: A Military-Based Study
,”
PLos. One
,
7
(
8
), p.
e43586
.10.1371/journal.pone.0043586
10.
Zoss
,
A. B.
,
Kazerooni
,
H.
, and
Chu
,
A.
,
2006
, “
Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX)
,”
IEEE/ASME Trans. Mechatronics
,
11
(
2
), pp.
128
138
.10.1109/TMECH.2006.871087
11.
Ikeuchi
,
Y.
,
Ashihara
,
J.
, and
Hiki
,
Y.
,
2009
, “
Walking Assist Device With Bodyweight Support System
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, St. Louis, MO, Oct. 10–15, pp.
4073
4079
.10.1109/IROS.2009.5354543
12.
Schiele
,
A.
,
2009
, “
Ergonomics of Exoskeletons: Objective Performance Metrics
,”
World Haptics 2009-Third Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
, pp.
103
108
.
13.
Schiele
,
A.
, and
Van
,
D. H. F. C. T.
,
2009
, “
Influence of Attachment Pressure and Kinematic Configuration on pHRI With Wearable Robots
,”
Appl. Bion. Biomech.
,
6
(
2
), pp.
157
173
.10.1155/2009/829219
14.
Hidler
,
J. M.
, and
Wall
,
A. E.
,
2005
, “
Alterations in Muscle Activation Patterns During Robotic-Assisted Walking
,”
Clin. Biomech.
,
20
(
2
), pp.
184
193
.10.1016/j.clinbiomech.2004.09.016
15.
Pons
,
J. L.
,
2010
, “
Rehabilitation Exoskeletal Robotics
,”
IEEE. Eng. Med. Biol. Mag.
,
29
(
3
), pp.
57
63
.10.1109/MEMB.2010.936548
16.
Walsh
,
C. J.
,
Endo
,
K.
, and
Herr
,
H.
,
2007
, “
A Quasi-Passive Leg Exoskeleton for Load-Carrying Augmentation
,”
Int. J. HR
,
4
(
3
), pp.
487
506
.10.1142/S0219843607001126
17.
van Dijk
,
W.
, and
Van der Kooij
,
H.
,
2014
, “
XPED2: A Passive Exoskeleton With Artificial Tendons
,”
IEEE. Robot. Autom. Mag.
,
21
(
4
), pp.
56
61
.10.1109/MRA.2014.2360309
18.
Gordon
,
K. E.
,
Sawicki
,
G. S.
, and
Ferris
,
D. P.
,
2006
, “
Mechanical Performance of Artificial Pneumatic Muscles to Power an Ankle-Foot Orthosis
,”
J. Biomech.
,
39
(
10
), pp.
1832
1841
.10.1016/j.jbiomech.2005.05.018
19.
Sawicki
,
G. S.
, and
Ferris
,
D. P.
,
2009
, “
Powered Ankle Exoskeletons Reveal the Metabolic Cost of Plantar Flexor Mechanical Work During Walking With Longer Steps at Constant Step Frequency
,”
J. Exp. Biol.
,
212
(
1
), pp.
21
31
.10.1242/jeb.017269
20.
Ferris
,
D. P.
,
Sawicki
,
G. S.
, and
Daley
,
M. A.
,
2007
, “
A Physiologist's Perspective on Robotic Exoskeletons for Human Locomotion
,”
Int. J. HR
,
4
(
3
), pp.
507
528
.10.1142/S0219843607001138
21.
Mooney
,
L. M.
,
Rouse
,
E. J.
, and
Herr
,
H. M.
,
2014
, “
Autonomous Exoskeleton Reduces Metabolic Cost of Walking
,”
J. Neuroeng. Rehabil.
,
11
(
1
), p.
151
.10.1186/1743-0003-11-151
22.
Mooney
,
L. M.
,
Rouse
,
E. J.
, and
Herr
,
H. M.
,
2014
, “
Autonomous Exoskeleton Reduces Metabolic Cost of Human Walking During Load Carriage
,”
J. Neuroeng. Rehabil.
,
11
(
1
), pp.
1
11
.10.1186/1743-0003-11-80
23.
Asbeck
,
A. T.
,
De Rossi
,
S. M. M.
,
Holt
,
K. G.
, and
Walsh
,
C. J.
,
2015
, “
A Biologically Inspired Soft Exosuit for Walking Assistance
,”
Int. J. Rob. Res.
,
34
(
6
), pp.
744
762
.10.1177/0278364914562476
24.
Panizzolo
,
F. A.
,
Galiana
,
I.
,
Asbeck
,
A. T.
,
Siviy
,
C.
,
Schmidt
,
K.
,
Holt
,
K. G.
, and
Walsh
,
C. J.
,
2016
, “
A Biologically-Inspired Multi-Joint Soft Exosuit That Can Reduce the Energy Cost of Loaded Walking
,”
J. Neuroeng. Rehabil.
,
13
(
1
), p.
43
.10.1186/s12984-016-0150-9
25.
Quinlivan
,
B. T.
,
Lee
,
S.
,
Malcolm
,
P.
,
Rossi
,
D. M.
,
Grimmer
,
M.
,
Siviy
,
C.
,
Karavas
,
N.
,
Wagner
,
D.
,
Asbeck
,
A.
,
Galiana
,
I.
, and
Walsh
,
C. J.
,
2017
, “
Assistance Magnitude Versus Metabolic Cost Reductions for a Tethered Multiarticular Soft Exosuit
,”
Sci. Robot.
,
2
(
2
), p.
eaah4416
.10.1126/scirobotics.aah4416
26.
Awad
,
L. N.
,
Bae
,
J.
,
O'Donnell
,
K.
,
De Rossi
,
S. M. M.
,
Hendron
,
K.
,
Sloot
,
L. H.
,
Kudzia
,
P.
,
Allen
,
S.
,
Holt
,
K. G.
,
Ellis
,
T. D.
, and
Walsh
,
C. J.
,
2017
, “
A Soft Robotic Exosuit Improves Walking in patients After stroke
,”
Sci. Transl. Med.
,
9
(
400
), p.
eaai9084
.10.1126/scitranslmed.aai9084
27.
Dijk
,
W. V.
,
Meijneke
,
C.
, and
Kooij
,
H.
,
2017
, “
Evaluation of the Achilles Ankle Exoskeleton
,”
IEEE. Trans. Neural. Syst. Rehabil. Eng.
,
25
(
2
), pp.
151
160
.10.1109/TNSRE.2016.2527780
28.
Kirkendall
,
D. T.
, and
Garrett
,
W. E.
,
2007
, “
Function and Biomechanics of Tendons
,”
Scand. J. Med. Sci. Sports
,
7
(
2
), pp.
62
66
.10.1111/j.1600-0838.1997.tb00120.x
29.
Collins
,
S.
,
2005
, “
Efficient Bipedal Robots Based on Passive-Dynamic Walkers
,”
Science
,
307
(
5712
), pp.
1082
1085
.10.1126/science.1107799
30.
McGeer
,
T.
,
1990
, “
Passive Dynamic Walking
,”
Int. J. Rob. Res.
,
9
(
2
), pp.
62
82
.10.1177/027836499000900206
31.
Stuempfle
,
K. J.
,
Drury
,
D. G.
, and
Wilson
,
A. L.
,
2004
, “
Effect of Load Position on Physiological and Perceptual Responses During Load Carriage With an Internal Frame Backpack
,”
Ergonomics
,
47
(
7
), pp.
784
789
.10.1080/0014013042000193264
32.
Veneman
,
J. F.
,
Ekkelenkamp
,
R.
,
Kruidhof
,
R.
,
van der Helm
,
F. C. T.
, and
van der Kooij
,
H.
,
2006
, “
A Series Elastic- and Bowden-Cable-Based Actuation System for Use as Torque Actuator in Exoskeleton-Type Robots
,”
Int. J. Rob. Res.
,
25
(
3
), pp.
261
281
.10.1177/0278364906063829
33.
Agrawal
,
V.
,
Peine
,
W. J.
, and
Yao
,
B.
,
2010
, “
Modeling of Transmission Characteristics Across a Cable-Conduit System
,”
IEEE. Trans. Rob.
,
26
(
5
), pp.
914
924
.10.1109/TRO.2010.2064014
34.
Neptune
,
R. R.
,
Zajac
,
F. E.
, and
Kautz
,
S. A.
,
2004
, “
Muscle Mechanical Work Requirements During Normal Walking: The Energetic Cost of Raising the Body's Center-of-Mass is Significant
,”
J. Biomech.
,
37
(
6
), pp.
817
825
.10.1016/j.jbiomech.2003.11.001
35.
Donelan
,
M.
,
Kram
,
R.
, and
Kuo
,
A. D.
,
2002
, “
Mechanical Work for Step-to-Step Transitions is a Major Determinant of the Metabolic Cost of Human Walking
,”
J. Exp. Biol.
,
205
(
23
), pp.
3717
3727
.10.1242/jeb.205.23.3717
36.
Mcruer
,
D.
,
1980
, “
Human Dynamics in Man-Machine Systems
,”
Automatica
,
16
(
3
), pp.
237
253
.10.1016/0005-1098(80)90034-5
37.
Xie
,
L.
, and
Huang
,
L.
,
2019
, “
Wirerope-Driven Exoskeleton to Assist Lower-Limb Rehabilitation of Hemiplegic Patients by Using Motion Capture
,”
Ass. Autom.
,
40
(
1
), pp.
48
54
.10.1108/AA-11-2018-022
38.
Brockway
,
J. M.
,
1987
, “
Derivation of Formulae Used to Calculate Energy Expenditure in Man
,”
Hum. Nutr. Clin. Nutr.
,
41
(
6
), pp.
463
471
.https://pubmed.ncbi.nlm.nih.gov/3429265/
39.
Grabowski
,
A.
,
Farley
,
C. T.
, and
Kram
,
R.
,
2005
, “
Independent Metabolic Costs of Supporting Body Weight and Accelerating Body Mass During Walking
,”
J. Appl. Physiol.
,
98
(
2
), pp.
579
583
.10.1152/japplphysiol.00734.2004
40.
Umberger
,
B. R.
, and
Rubenson
,
J.
,
2011
, “
Understanding Muscle Energetics in Locomotion: New Modeling and Experimental Approaches
,”
Exerc. Sport Sci. Rev.
,
39
(
2
), pp.
59
67
.10.1097/JES.0b013e31820d7bc5
You do not currently have access to this content.